

The Unique Challenges of Developing Novel Therapies for Abdominal Aortic Aneurysms

John A. Curci, MD, FACS

Director, Aortic Aneurysm Research Laboratories,
Vanderbilt University

Principal Investigator [Biomarkers Core], N-TA³CT

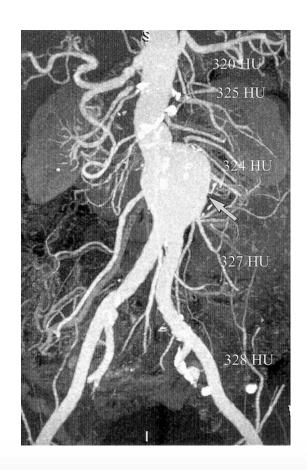
Conflicts of Interest

Research Funding

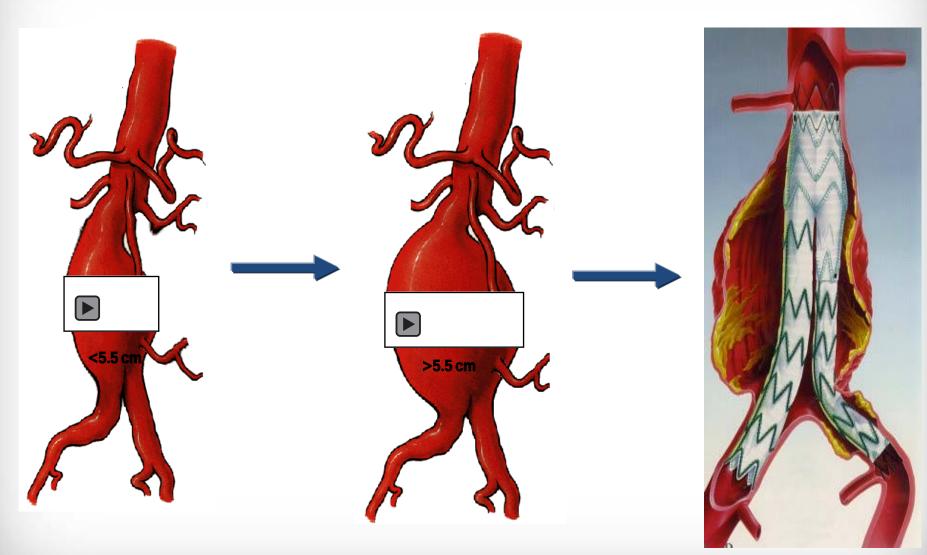
Non-Profit Sources:

Society

National Institutes for Health
American Vascular Association
American College of Surgeons
American Heart Association
Flight Attendants Medical
Research Institute
Peripheral Vascular Surgery


Off-label indications:

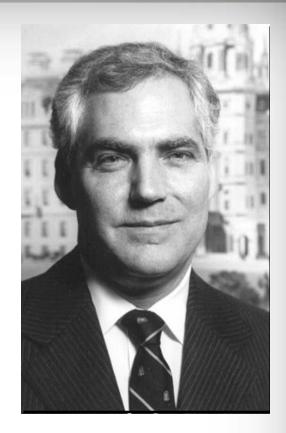
Doxycycline



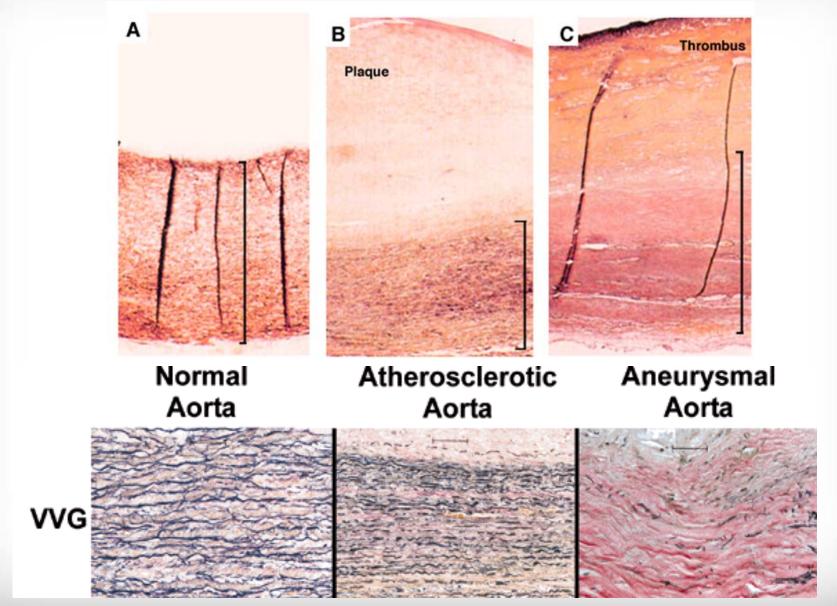
Disease Modifying Therapy for AAA

- The Practical Clinical Therapeutic Considerations
- Limitations of Clinical Trials for AAA
- Advanced Considerations and Implications for Lab Work

Contemporary Management of AAA

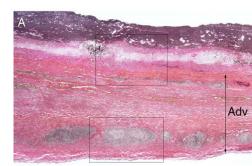


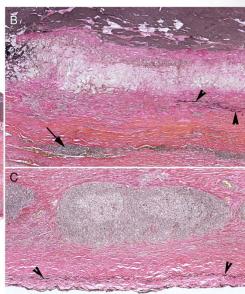
THE AAA AS A UNIQUE VASCULAR DISEASE


A Radical Thought

not the answer to the disease in all patients with AAA. In addition, preservation of fluorescent fibers that morphologically resemble elastin in four of the aortas, with only a trace of iron hematoxylin—reactive elastin, suggests that the pathogenetic mechanism is not indiscriminate destruction of the media by atherosclerotic involvement. Instead, there appears to be a specific and perhaps subtle alteration detectable by histochemical techniques. One possibility is that the elastin is really "gone" and that the residual matrix is a scaffolding of collagen, like type III, that codistributes with the elastin. Not enough is known at present about the chemistry of the reaction of elastin with iron hematoxylin to allow a more specific hypothesis about this alteration.

M. David Tilson, MD

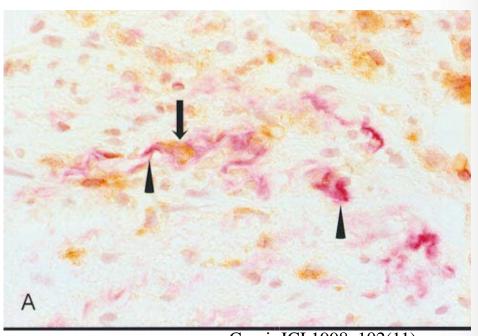

Histologic Changes



Initial Focus of Investigation

- Two shiny histologic features of the AAA
 - Severely diminished medial elastin content
 - Heavy inflammatory cell infiltration
- Inflammation and Elastin Loss
 - Matrix Proteases
 - Elaboration by activated macrophages
 - Induced by infection/autoimmunity

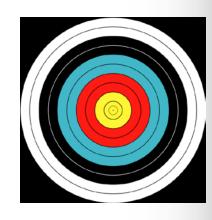
- Working Hypothesis
 - Inflammation → Protease → Thinning of the aortic wall → Relative weakening → "Ballooning" of the aorta → Further weakening → Rupture


Histology Suggestion Pathophysiology

Arrow: Macrophage

Arrowhead: Elastin Fragments

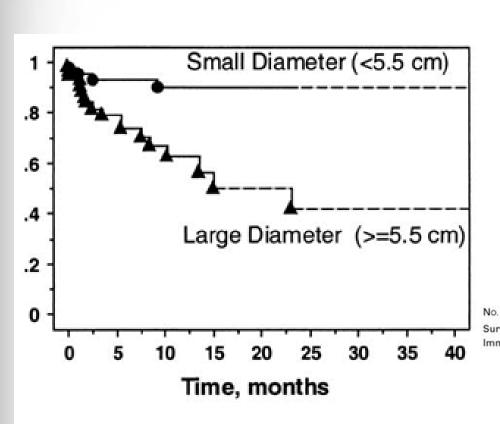
Pink: MMP-12


Brown: CD68

Curci, JCI 1998, 102(11)

How do we translate?

- Human Histology
 - Inflammation
 - Protease Activity/Matrix Modification
- Targeting Pathophysiology
 - Need a teleologic understanding
 - Deciphering pathology from response


Defining Goals of Medical Therapy

CLINICAL THERAPEUTICS IN THE CONTEXT OF AAA

Looking into the Future

- Natural History of AAA
 - Rupture risk increasing substantially only after 5.5
 cm
 - Growth at roughly 10% annually
 - Early surgery no advantage

Size is (really) good at predicting rupture

Fillinger MF, et. Al., J Vasc Surg 2003;37:724-32.

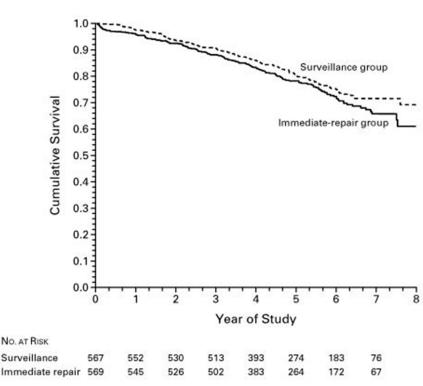
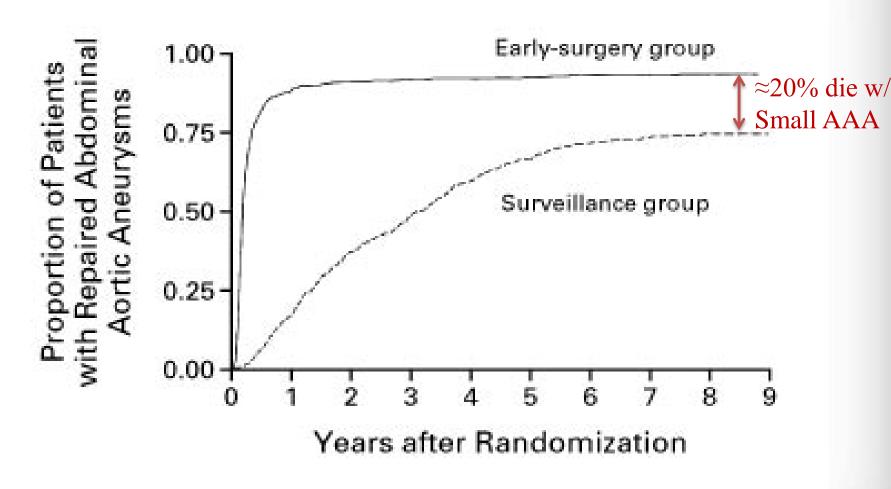
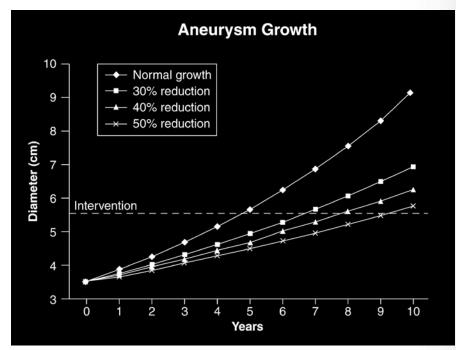



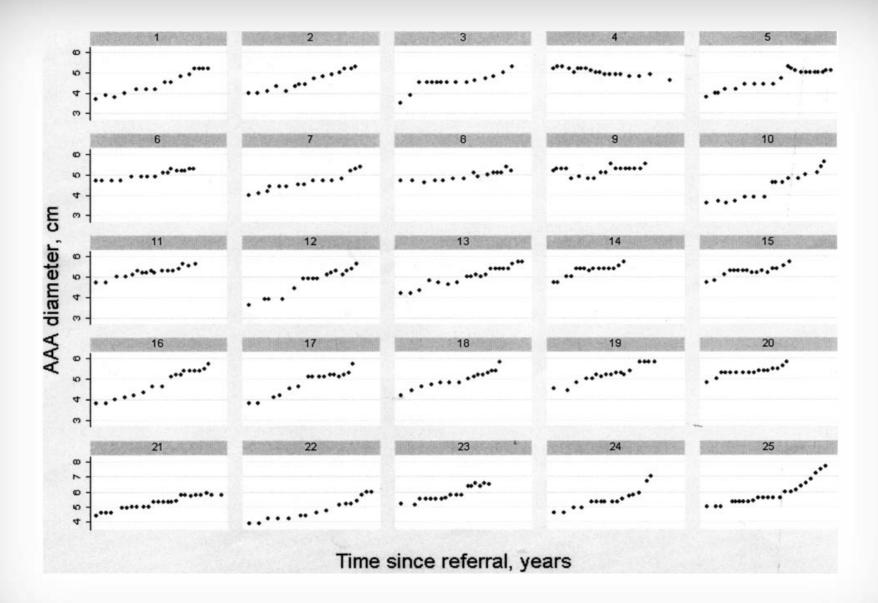
Figure 2: There was no significant difference between the two groups in the primary outcome of the rate of death from any cause (relative risk, 1.21 for repair vs. surveillance; 95 percent confidence interval, 0.95 to 1.54)

Growth is Nearly Inevitable


Stabilizing the Aneurysm

- Prevent AAA reaching threshold for repair
 - Slow the growth
 - Stop the growth

A Crude Estimation


- For very small AAA,
 A 50% reduction in
 growth rate may
 extend need for
 intervention about 5
 years.
- Larger "small AAA" will have appreciably less benefit.

Rentschler M and Baxter BT, Ann NYAS, Volume 1085, pages 39–46, November 2006

Looking into the Future

- Natural History of the Patient with AAA
 - Life expectancy -- not AAA related
 - Other CV disease
 - Malignancy
 - Etc
- Improvements in the treatment of other cardiovascular disease may be at odds with the medical treatment of AAA which delays natural progression of disease.

Calculating the Effect of Growth Inhibition

- What is the minimum inhibition of growth?
 - Delay/Obviate need for surgical intervention
 - Improve the quality of life
- Monte Carlo simulations
 - Utilize known vital statistics
 - In silico estimate the effects of a new treatment

Predicted Lifetime Effects of Slowed AAA Growth

	Simulation Results				
	% Ор	erated			
% Reduction					
with Arbitrary			Absolute	Relative	
Rx	Placebo	Treatment	Difference	Reduction	
40	78%	65%	13%	16%	
30	78%	70%	8%	11%	
20	78%	73%	5%	7%	

Non-invasive Treatment of Abdominal Aortic Aneurysms Clinical Trial

THE N-TA³CT STUDY

N-TA³CT RCT Study Design

- Doxycycline 200 mg daily (100 mg bid)
- Include Small AAA at risk for growth
 - 3.5 to 5.0 cm in men
 - 3.5 to 4.5 cm in women
- All treated for 2 years
- CT imaging every 6 months
- Sophisticated pre-specified statistics to evaluate growth
 - Based on rank order
 - Includes effect of death or AAA repair in primary outcome
- Biorepository (imaging and serum/plasma/DNA)

Powering the Study

		Simulation Results					
	Study Design		% Operated				
% Reduction with Doxycycline	N (per treatment)	Power	Placebo	Doxycycline	Absolute Difference	Relative Reduction	
40	85 124	0.90 0.98	78%	65%	13%	16%	
30	124	0.84	78%	70%	8%	11%	
20	124	0.70	78%	73%	5%	7%	

RIP
Propranolol
2002

Pemirolast Mast-cell 2015 RIP Exercise 2013

RIP
Doxycycline?
2013

RIP
IL-1 beta antibody?
(ACZ885)
2015

RIP
Bunch of
Others!
2015

Propanolol Aneurysm Trial Investigators. J Vasc Surg. 2002;35(1):72. Int J Numer Method Biomed Eng. 2014 Feb;30(2):280-95. Ann Intern Med. 2013 Dec 17;159(12):815-23. Br J Surg. 2015 Jul;102(8):894-901.

Characteristic		Adjusted Difference (95% CI), cm/y	P Value			
king f	actors					
Smokers vs nonsmokers		-0.08 (-0.22 to 0.05)	.24			
Years of	f smoking, per 1-y increase	0.00001 (-0.001 to 0.001)	.99			
Pack-ye	ears, per 1-pack-year increase	0.0001 (0.000 to 0.001)	.64			
-	edication					
Hi: Sy	β-blocker			0.009 (-0.02 to 0.04)	.51	
e li:	Cholesterol-lowering medication			-0.02 (-0.05 to 0.01)	.18	
Го Н[Antihypertensive Daily aspirin Antiarrhythmic			-0.001 (-0.04 to 0.03)	.78	
.D BN				-0.01 (-0.05 to 0.02)	.48	
di VI				0.000 (-0.03 to 0.03)	.98	
An En	Anticoagulant			0.001 (-0.03 to 0.03)	.94	
troke	or TIA	0.04 (-0.004 to 0.08)	.08			
eep-v	ein thrombosis	0.004 (-0.06 to 0.06)	.88			
laudic	ation	-0.01 (-0.06 to 0.03)	.52			
ABG o	r PTCA	0.002 (-0.03 to 0.03)	.92			
ancer		0.02 (-0.02 to 0.05)	.40	ALL THE PARTY IS NOT THE		
	ary emboli	0.02 (-0.08 to 0.12)	.69	Abbreviations: BMI, body mass index (calculated as weight in kilograms		
dicatio		0.000 (0.00) . 0.01		divided by height in meters squared);		
β-blocker		0.009 (-0.02 to 0.04)	.51	CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary		
		-0.02 (-0.05 to 0.01) -0.001 (-0.04 to 0.03)	.18	disease; HDL-C, high-density		
Daily aspirin		-0.001 (-0.04 to 0.03) -0.01 (-0.05 to 0.02)	.48	lipoprotein cholesterol;		
Antiarrhythmic		0.000 (-0.03 to 0.02)	.98	LDL-C, low-density lipoprotein cholesterol; PTCA, percutaneous		
Anticoagulant 0.001 (-0.03 to 0.03)		.94	transluminal coronary angioplasty;			

JAMA Surg. 2015;150(1):44-50.

Table 2 Propensity analysis of factors potentially affecting abdominal aortic aneurysm enlargement rate

	No. of matched pairs	Enlargement rate without factor (mm/year)	Change in rate with factor (mm/year)	Р
Age > 72 years*	459	2.1	0.0 (-0.7, 0.7)	0.934
After 2000	310	1.9	-1.1 (-2.0, -0.2)	0.016
Current smoking	639	2.1	- 0.2 (-0.6, 0.2)	0.358
After 2000	461	2.0	-0.2 (-0.7, 0.2)	0.338
Coronary artery disease	894	2.1	-0.3 (-0.8, 0.2)	0.198
After 2000	561	2.1	-0.5 (-1.2, 0.2)	0.154
Chronic obstructive pulmonary disease	671	1.7	0.5 (0.0, 1.0)	0.050
After 2000	430	1.7	0.7 (-0.1, 1.6)	0.109
Diabetes	263	2.4	-1.2 (-2.0, -0.3)	0.008
After 2000	185	2.1	-1.1 (-2.0, -0.2)	0.020
Statins	1013	2.1	0.1 (-0.2, 0.5)	0.510
After 2000	538	1.8	0.4 (0.3, 1.1)	0.290
Beta-blockers	828	2.1	-0.5 (-1.2, 0.3)	0.242
After 2000	605	2.0	0.0 (-0.6, 0.6)	0.997
Angiotensin-converting enzyme inhibitors	994	2.0	0.1 (-0.3, 0.4)	0.656
After 2000	669	2.0	0.1 (-0.4, 0.7)	0.613
Angiotensin II receptor blockers	115	1.8	-0.2 (-1.3, 0.9)	0.608
After 2000	107	1.8	0.1 (-1.3, 1.1)	0.823

Values in parentheses are 95 per cent c.i. *Age at first measurement; other factors could be present at any time during follow-up. After 2000 refers to measurements after 1 January 2000.

British Journal of Surgery Volume 102, Issue 12, pages 1480–1487, November 2015

Finding effective therapy

SORTING THE WHEAT FROM THE CHAFF

Potential Goals of Medical Therapy

- Alter the natural history of an established AAA
 - Only large AAA pose clinical danger
 - Small AAA are asymptomatic and do not rupture
- Prevent AAA development
 - No way to identify aorta with nascent AAA.

Stabilizing the Aneurysm

- Prevent AAA reaching threshold for repair
 - Slow the growth
 - Stop the growth
 - Reverse the growth
- Delay repair beyond 5.5 cm
 - Reduce risk of rupture at a given diameter

Novel Research Goals

- Develop Biomarkers
 - Only opportunity to identify "pre-clinical" disease
 - Understand longitudinal progression of disease
 - Needed to allow screening of therapeutics before moving to expensive randomized clinical trials.
- Hi Fidelity Models of AAA
 - Understand contextual value of current models
 - Develop novel models that better represent the clinical condition

Novel Research Goals

- Recognize Heterogeneity of AAA
 - TAAD is not AAA
 - Not all AAA may be homogeneous.
 - Aortic vs. Aortoiliac involvement
 - Infrarenal vs. Pararenal/Visceral
 - "Inflammatory" vs. ?
 - AAA in Diabetics
 - AAA in non-Smokers

Considerations for Aortic Wall Stabilization

- Production of matrix proteins
- Integration of matrix proteins in a functionally relevant manner
- Appropriate active cellular machinery
- Role of MMP may be beneficial when properly regulated

"It's fine to discover cures, but, remember, chronic conditions are our bread and butter."

Trouble in Paradise

BEYOND N-TA³CT

- Propranolol for small abdominal aortic aneurysms: results of a randomized trial. Propanolol Aneurysm Trial Investigators. J Vasc Surg. 2002;35(1):72.
- ACZ885 for the Treatment of Abdominal Aortic Aneurysm (AAA). IL-1beta monoclonal antibody. Terminated 2015
- Study of the Effectiveness of Telmisartan in Slowing the Progression of Abdominal Aortic Aneurysms (TEDY). Stopped Recruitment in US
- Eplerenone in the Management of Abdominal Aortic Aneurysms (Adosterone inhibition). Just started recruiting
- The Efficacy of Ticagrelor on Abdominal Aortic Aneurysm (AAA) Expansion (TicAAA). Started recruiting in 2014.
- Comparison of Beta-blocker Versus Angiotensin Receptor Blocker for Suppression of Aneurysm Expansion in Patients With Small Abdominal Aortic Aneurysm and Hypertension (BASE Trial). Recruiting. Estimated completion October 2016
- AORTA Trial: Pemirolast (CRD007) (mast cell inhibitor). Br J Surg. 2015 Jul;102(8):894-901. Epub 2015 May 12. No effect.
- Cyclosporine A in Patients With Small Diameter Abdominal Aortic Aneurysms (ACA4). Recruiting since 2014
- Study on Anti-inflammatory Effect of Anti-hypertensive Treatment in Patients With Small AAA's and Mild Hypertension (PISA) (Amlodipine Aliskiren)
- Exercise Therapy to Treat Adults With Abdominal Aortic Aneurysms (AAA:STOP): No Effect on AAA growth: Int J Numer Method Biomed Eng. 2014 Feb;30(2):280-95.
- PHAST
- N-TA³CT
- rterioscler Thromb Vasc Biol. 2016;36:236-244, published online before print December 29 2015, Surrogate Markers of Abdominal Aortic Aneurysm Progression
- Lederle

rterioscler Thromb Vasc Biol. 2016;36:236-244, published online before print December 29 2015,