

Disclosure Information

FINANCIAL DISCLOSURE:

None.

UNLABELED/UNAPPROVED USES DISCLOSURE:

None.

Outline

- What have we learned from ten years of GWAS?
- Overall strategies for post-GWAS studies
- Examples of follow-up studies informed by cardiovascular GWAS

GWAS have discovered hundreds of CVD-related loci

Stanford University

GWAS have discovered hundreds of CVD-related loci

Genome-wide association studies 2005-2015

GWAS have discovered hundreds of CVD-related loci

Cardiovascular disease: 179

Cardiovascular measurements: 217

Lipids: 309

Body weight and measures: 388

Metabolic disease: 142

Stanford University

Lessons learned: Genetic architecture

Many loci with tiny effects

Allelic heterogeneity is common

Genetic architecture of extremes is similar to overall trait

Lessons learned: Biological insights directly from GWAS

Ref: Locke AE. Nature 2015;518(7538):197-206); Shungin D. Nature 2015. 518(7538):187-96.

Stanford University

Lessons learned: Follow-up with deeper phenotyping

Lessons learned: Functional follow-up in model systems

Lessons learned: Functional follow-up in model systems

Lessons learned: Functional follow-up in model systems

Outline

What have we learned from ten years of GWAS?

Hundreds of loci

Insights to genetic architecture

Few clinical applications

New biology

Stanford University

Outline

Overall strategies for post-GWAS studies

Overall goals and strategies of post-GWAS studies

Challenges of identifying the causal gene

Challenges of identifying the causal gene

Challenges of identifying the causal gene

Position on chromosome 1 (Mb)

Approaches to identify causal variants and genes

Outline

Examples of follow-up studies informed by cardiovascular GWAS

Studies of insulin resistance and fat distribution loci in adipocytes, hepatocytes and myocytes

- Phenotypes
 - Glucose uptake
 - Lipolysis
 - Adipogenesis
 - Glycogen metabolism
 - Insulin signaling
 - Gene and protein expression
- SGBS, 3T3-L1, primary preadipocytes, HepG2 and C2C12
- CRISPR-Cas9 with lentiviral transduction
- Compound incubation

Casimiro Castillejo-Lopez

Naomi Cook

Susanne Trombley

Christoph Nowak

IG UPPSAL UNIVERSI

Screening and characterization of causal genes using zebrafish

Mendelian randomization to address causality

Mendelian randomization to address causality

Mendelian randomization to address causality

MR studies of obesity and insulin resistance

Ref: Gao H et al. Diabetes 2013; 62(4):1338-44; Fall T et al. PLoS Med 2013; 10(6):e1001474; Fall T et al. Diabetes 2015; 64(5):1841-52; Fall T et al. Diabetes 2015; 64(7):2676-84; Hägg S et al. Int J Epidemiol. 2015;44(2):578-86.

Stanford University

Concluding remarks

- GWAS has provided us with:
 - Hundreds of cardiovascular loci to follow-up upon
 - New knowledge about genetic architecture
 - Initial biological insights
- Now, we need to:
 - Establish causal variants and genes
 - Perform various kinds of follow-up studies to better understand biology and initiate translation
- Plenty of work, but many important discoveries to be made

Thanks for your attention! Questions or comments?

