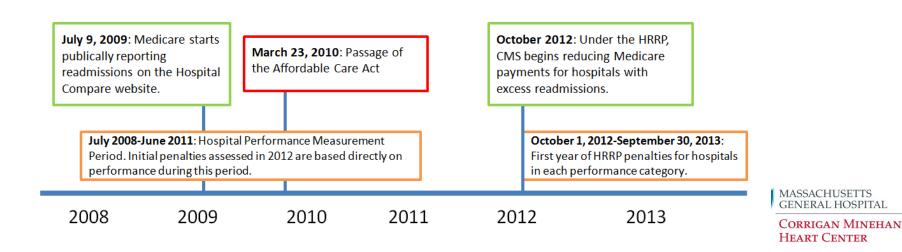


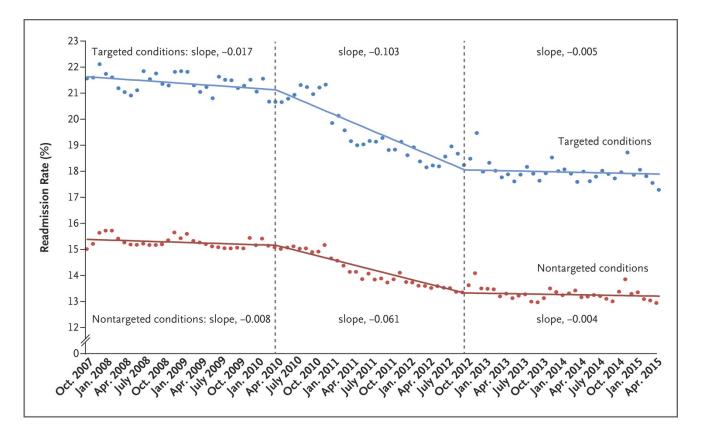
Impact of Financial Penalties in Medicare's Hospital Readmissions Reduction Program

Jason H. Wasfy, M.D. M.Phil. Corwin Matthew Zigler, Ph.D. Christine Choirat, Ph.D. Yun Wang, Ph.D. Francesca Dominici, Ph.D. Robert W. Yeh, M.D., M.Sc.

February 29, 2016


Disclosures

- Salary, Massachusetts General Physicians Organization
- Consulting, QPID Health
- Consulting, Gilead Sciences
- Member, New England Comparative Effectiveness Public Advisory Council


Background

- Passage of the Affordable Care Act created the Hospital Readmissions Reduction Program (HRRP)
- Introduced the prospect of financial penalties based on performance on readmissions for AMI, CHF, pneumonia during 3 year period
- Uncertain effects specific concerns regarding equity, competing priorities, vulnerable populations

Background

 30 day hospital readmissions after AMI, CHF, pneumonia decreased faster after passage of the Affordable Care Act

Zuckerman et al NEJM 2016

Background

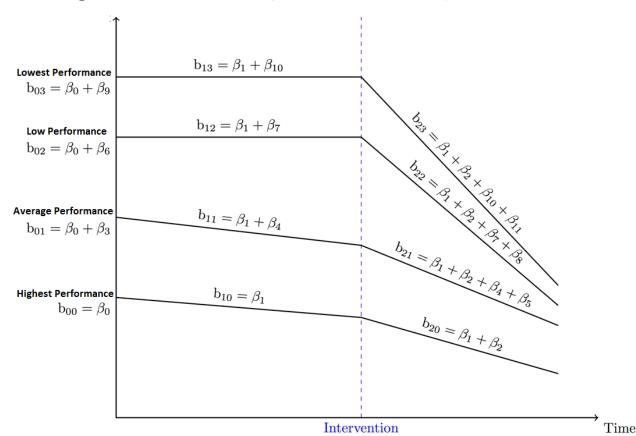
- We don't know which hospitals drove improvement
- In particular, individual effects on higher and lower performing hospitals
- We sought to determine if the <u>acceleration</u> in improvement in readmission rates was greater in lowest-performing hospitals compared with the highest-performing hospitals

- Queried MedPAR files, which contain Medicare beneficiaries' inpatient claims data
- Identified patients discharged alive 2000-November 2013 with AMI, CHF, pneumonia, and identified those readmitted to acute care facilities within 30 days
- Identified comorbidities and hospital characteristics

- Estimated risk-standardized 30-day all-cause readmission rates (RSRRs) for each hospital (for all three conditions)
- Fitting a logistic regression to the 30-day all-cause readmissions as a function of patients' age, sex, and comorbidities
- We also calculated a combined-condition RSRR, reflecting readmissions for any of the three conditions

We identified information regarding hospital penalties from CMS, and classified hospital performance based on initial penalty:

Lowest performance (greater than or equal to 99% maximum penalty)


Low performance (greater than or equal to 50%, less than 99% maximum penalty)

Average performance (less than 50% maximum penalty, but not zero)

Highest performance (zero penalty)

- Pre-post analysis stratified by performance group
- Piecewise linear model with change point defined as passage of the law (March 2010)

Results

2868 hospitals met inclusion criteria

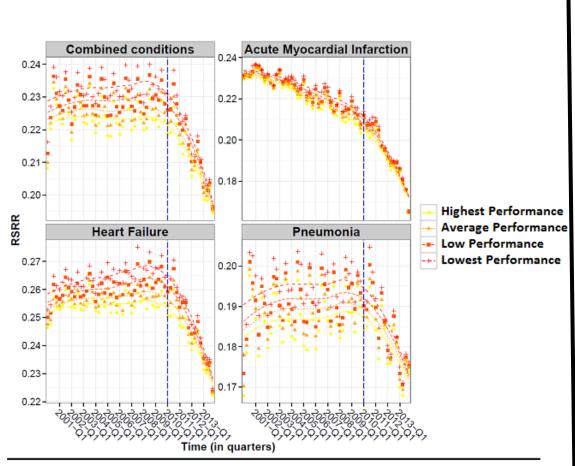
866 (30.1%) in highest performance group

1261 (44.0%) in average performance group

483 (16.8%) in low performance group

258 (9.0%) in lowest performance group

- Highest Performance
- Average Performance
- Low Performance
- Lowest Performance


MASSACHUSETTS
GENERAL HOSPITAL
CORRIGAN MINEHAN
HEART CENTER

Results

- Given the size of the dataset, patient and hospital characteristics were different in every performance group
- In particular, highest performance hospitals served more white patients than lowest performance hospitals (87.9% vs. 85.2%, p <0.001)
- Highest performance hospitals were more often <u>rural</u> than lowest performance hospitals (29.9% vs. 25.2%, p<0.001)
- Highest performance hospitals served a lesser proportion of <u>dual-eligibles</u> than lowest performance hospitals (17.0% vs. 20.3%, p <0.001)

Results

Pre-law slope: Highest Performance	<u>Slope</u> -0.00004	<u>P value</u> <0.0001
Average Performance	0.00000	1
Low Performance	0.00005	1
Lowest Performance	0.00006	1
Post-law slope: Highest Performance	-0.00171	<0.0001
Average Performance	-0.00185	<0.0001
Low Performance	-0.00206	<0.0001
Lowest Performance	-0.00230	<0.0001

Results – Combined conditions

Differences in pre-post RSRR changes

Performance Groups Compared	Estimate	Pr(> t)
Highest vs Average Performance	-0.00018	<0.0001
Highest vs Low Performance	-0.00045	<0.0001
Highest vs Lowest Performance	-0.00069	<0.0001

Results – Acute Myocardial Infarction

Differences in pre-post RSRR changes

Performance Groups Compared	Estimate	Pr(> t)
Highest vs Average Performance	-0.00021	<0.0001
Highest vs Low Performance	-0.00044	<0.0001
Highest vs Lowest Performance	-0.00069	<0.0001

Results – Congestive Heart Failure

Differences in pre-post RSRR changes

Performance Groups Compared	Estimate	Pr(> t)
Highest vs Average Performance	-0.00022	<0.0001
Highest vs Low Performance	-0.00057	<0.0001
Highest vs Lowest Performance	-0.00085	<0.0001

Results - Pneumonia

Differences in pre-post RSRR changes

Performance Groups Compared	Estimate	Pr(> t)
Highest vs Average Performance	-0.00011	<0.0001
Highest vs Low Performance	-0.00026	<0.0001
Highest vs Lowest Performance	-0.00042	<0.0001

Results – Sensitivity Analyses

Our main results were robust in sensitivity analyses:

- (1) Including hospital volume
- (2) Including other hospital characteristics
- (3) Changing the "pre-law" period to 15 months

Discussion

- Hospitals with lower performance experienced greater acceleration of performance after the law was passed
- The rate of decrease in RSRRs for penalized conditions was <u>one-third greater</u> for the lowest-performing hospitals than for the highest performing hospitals

Discussion

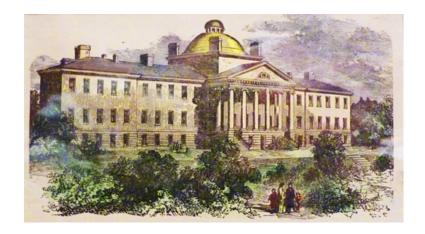
- A concerning potential outcome of the HRRP was that low-performing hospitals would not be able to improve
- Our analysis is reassuring with respect to that concern
- Our analysis is consistent with previously reported findings that HRRP penalties are applied disproportionally to hospitals that serve black patients, urban patients, and dual-eligibles

Discussion

- Although this may be a form of regression to the mean (lower performing hospitals have more room for improvement) we present strong evidence that the reverse did not occur
- Our analysis minimizes confounding bias, a common threat to validity in policy analyses
- Highest performance group serving as a control for lower performance groups

Limitations

- Analysis of billing codes
- We do not know that declines in RSRRs are related to genuine improvements in the quality of care
- We cannot detect effects on observation readmissions
- We cannot adjust for all confounding by hospital characteristics


Conclusions

- Hospitals with relatively lower initial performance had greater <u>acceleration</u> of improvement in RSRRs compared with the highest performance group
- This effect persisted for all three conditions in the initial set of HRRP penalties

Thanks!

jwasfy@mgh.harvard.edu @jasonwasfy

Backup Slides – Sensitivity Analyses

- Refitted piecewise model weighted by hospital volume for each disease condition
- Varied the definition of "pre-law" to 15 quarters (40 quarters in the primary analysis)
- Included other hospital characteristics to adjust for differences between hospitals in performance categories

Characteristics of Patients and Hospitals, by Initial Hospital Performance Group

Highest Performance	Average Performance	Low Performance	Lowest Performance	Overall
866	1,261	483	258	2,868
311,920	467,000	217,350	113,270	1,109,530
roportion of who	ole population,	%		
20.8	18.7	18.5	16.4	19
42.8	44.9	47.1	47.7	45
36.5	36.3	34.4	35.9	35.9
79.5 (±8.4)	79.5 (±8.5)	79.5 (±8.5)	79.8 (±8.6)	79.5 (±8.5)
53.1	54.6	55	56.7	54.5
87.9	85.8	81.9	81.6	85.2
7.3	9.6	13.4	13.1	10.1
4.8	4.5	4.7	5.3	4.7
	866 311,920 roportion of who 20.8 42.8 36.5 79.5 (±8.4) 53.1 87.9 7.3	Performance Performance 866 1,261 311,920 467,000 roportion of whole population, 20.8 18.7 42.8 44.9 36.5 36.3 79.5 (±8.4) 79.5 (±8.5) 53.1 54.6 87.9 85.8 7.3 9.6	Performance Performance Performance 866 1,261 483 311,920 467,000 217,350 roportion of whole population, Value 20.8 18.7 18.5 42.8 44.9 47.1 36.5 36.3 34.4 79.5 (±8.4) 79.5 (±8.5) 79.5 (±8.5) 53.1 54.6 55 87.9 85.8 81.9 7.3 9.6 13.4	Performance Performance Performance Performance 866 1,261 483 258 311,920 467,000 217,350 113,270 roportion of whole population, % 20.8 18.7 18.5 16.4 42.8 44.9 47.1 47.7 36.5 36.3 34.4 35.9 79.5 (±8.4) 79.5 (±8.5) 79.5 (±8.5) 79.8 (±8.6) 53.1 54.6 55 56.7 87.9 85.8 81.9 81.6 7.3 9.6 13.4 13.1

Characteristics of Patients and Hospitals, by Initial Hospital Performance Group

Characteristics	Highest Performance	Average Performance	Low Performance	Lowest Performance	Overall
Co-morbidity, # (%)					
History of CHF	33.2	36.1	39.1	41.8	36.5
History of AMI	6.9	7.3	7.9	8.3	7.4
Unstable angina	4.5	4.6	5.2	5.4	4.8
Chronic atherosclerosis	54.5	55.5	58	58.6	56
Hypertension	61.5	63.7	65.6	67.5	63.8
Stroke	2.3	2.5	2.7	2.9	2.5
Cerebrovascular disease other than stroke	5.6	6.2	6.4	6.8	6.1
Renal failure	17.1	18.7	20.7	21	18.9
COPD	38.2	40.3	41.2	43	40.2
Pneumonia	20.9	22.6	23.5	26	22.7
Protein calorie malnutrition	6.1	6.4	6.5	6.4	6.3
Dementia	12.3	13.7	14.3	16.2	13.7
Functional disability	3.4	3.9	4.3	4.7	3.9
Peripheral vascular disease	9.7	10.5	11.5	12	10.6
Metastatic cancer	9.5	9.8	10.2	10.4	9.9
Major psychiatric disorder	3	3.5	3.7	4.1	3.5
Chronic liver disease	1.1	1.2	1.3	1.4	1.2
Depression	8.7	9.2	9.2	9.7	9.1
Diabetes	34.8	36.1	37.9	39.1	36.4
Anemia	31.3	32.7	33.8	34.5	32.7
Asthma	3.7	3.7	3.9	4.3	MASSACHUSETTS GENERAL HOSPIT
					CORRIGAN MINE

HEART CENTER

Characteristics of Patients and Hospitals, by Initial Hospital Performance Group

Characteristics	Highest Performance	Average Performance	Low Performance	Lowest Performance	Overall
Major discharge disposition and outco	mes, # (%)				
Discharged to home	56.2	52.2	50.1	47	52.4
Discharged to home with care	15.6	17.8	19.5	21.1	17.9
Discharged to nursing home	21.7	23.3	23.4	25.2	23
Length of stay, days, mean (SD)	$6(\pm 4.8)$	6 (±5.0)	6 (±5.5)	6 (±5.7)	6 (±5.1)
Observed readmission rate	19.9	22	24.2	26.3	22.3
Hospital level					
Hospital located in a rural area, %	29.9	23.7	21.9	22.9	25.2
Private not-for profit hospital, %	70.6	62.4	66.2	61.6	65.4
Major teaching hospital, %	6.1	9.6	12.7	11.2	9.2
All admitted Medicare fee-for-service p	opulation, %				
Median annual volume	2,539,620	3,783,810	1,694,920	825,410	8,843,770
Age, years, mean (SD)	$78.0 (\pm 8.0)$	78.1 (±8.1)	$78.2 (\pm 8.1)$	$78.6 (\pm 8.2)$	78.1 (±8.1)
Female	56.7	57.8	57.8	59.3	57.6
White	88.6	86.5	82.3	81.1	85.8
Black	7.0	9.1	13.0	13.2	9.6
Other race	4.4	4.4	4.7	5.7	4.6
Dual-eligible (eligible for Medicaid and Medicare)	17.0	20.6	22.0	26.1	20.3
Outcomes (all admitted Medicare fee-fe	or-service popul	lation), %			
30-day all-cause mortality rate	8.8	8.8	8.6	8.7	8.8
30-day all-cause readmission rate	13.3	14.4	15.8	17.2	14.6

All P values < 0.001 for linear trends.

Combined Conditions

Readmission Trends, Improvement in Readmission Trends Pre-/Post-Law Within Each Performance Group, and Testing Differences in Pre-Post Changes Across All Performance Groups

		Estimate	t value	Pr(> t)		
		Estimation of trends				
Pre-law slope:						
Highest Performance	$b_{10} \ge 0$	-0.00004	-10.6250	<0.0001		
Average Performance	$b_{11} \ge 0$	0.00000	0.7090	1		
Low Performance	$b_{12} \ge 0$	0.00005	10.7341	1		
Lowest Performance	$b_{13} \ge 0$	0.00006	9.1642	1		
Post-law slope:						
Highest Performance	$b_{20} \ge 0$	-0.00171	-149.0630	<0.0001		
Average Performance	$b_{21} \ge 0$	-0.00185	-194.3643	<0.0001		
Low Performance	$b_{22} \ge 0$	-0.00206	-134.3433	< 0.0001		
Lowest Performance	$b_{23} \ge 0$	-0.00230	-109.2229	<0.0001		
	Pre-post analysis (t	esting that post-law slopes a	re higher than pre-law	slopes, more accelerated		
		decline after the law within	each performance gro	oup)		
Highest Performance	$\beta_2 \ge 0$	-0.00167	-120.4455	<0.0001		
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00185	-160.9185	<0.0001		
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00212	-113.9472	<0.0001		
Lowest Performance	$\beta_2 + \beta_{11} \ge 0$	-0.00236	-92.7568	<0.0001		
	Differences in pre-po	ost RSRR changes (testing ti	hat the acceleration in t	the decline of RSRR post-		
	law compar	ed to RSRR pre-law is differ	ent across hospital per	formance groups		
Highest vs Average Performance	$\beta_5 \ge 0$	-0.00018	-9.9395	<0.0001		
Average vs Low Performance	$\beta_5 - \beta_8 \le 0$	0.00027	12.2071	<0.0001		
Low vs Lowest Performance	$\beta_8-\beta_{11}\leq 0$	0.00051	18.1943	<0.0001		
Highest vs Low Performance	$\beta_8 \ge 0$	-0.00045	-19.2264	<0.0001		
Highest vs Lowest Performance	$b_{11} \ge 0$	-0.00069	-23.7127	<0.0001		

Acute Myocardial Infraction

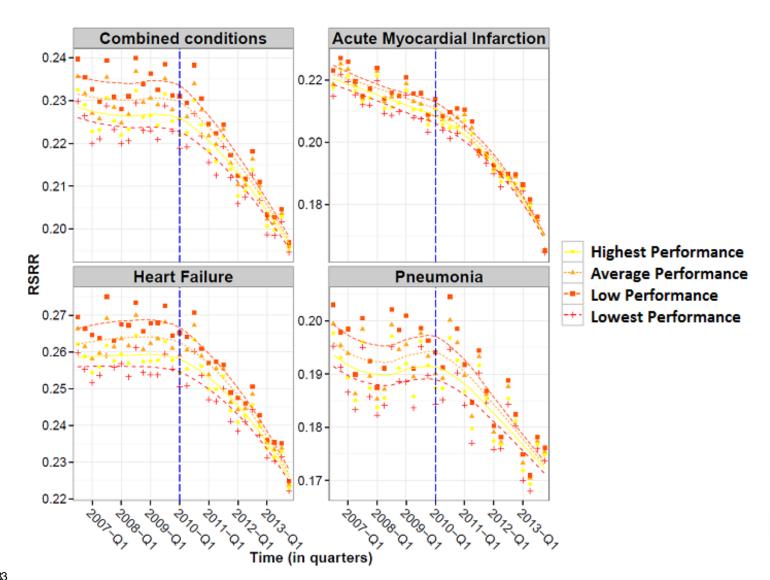
		Estimate	t value	Pr(> t)	
	Estimation of trends				
Pre-law slope:					
Highest Performance	$b_{10} \ge 0$	-0.00066	-116.5930	< 0.0001	
Average Performance	$b_{11} \ge 0$	-0.00060	-134.1979	<0.0001	
Low Performance	$b_{12} \ge 0$	-0.00055	-77.0769	<0.0001	
Lowest Performance	$b_{13} \ge 0$	-0.00050	-47.7443	<0.0001	
Post-law slope:					
Highest Performance	$b_{20} \ge 0$	-0.00227	-128.3233	<0.0001	
Average Performance	$\mathbf{b_{21}} \geq 0$	-0.00242	-173.6928	<0.0001	
Low Performance	$b_{22} \ge 0$	-0.00260	-116.9248	<0.0001	
Lowest Performance	$b_{23} \ge 0$	-0.00280	-86.2326	<0.0001	
		Pre-post	t analysis		
Highest Performance	$\beta_2 \ge 0$	-0.00161	-75.1432	<0.0001	
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00182	-107.9846	<0.0001	
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00205	-76.2150	<0.0001	
Lowest Performance	$\beta_2+\beta_{11}\geq 0$	-0.00230	-58.6266	<0.0001	
		Differences in pre-post RSRR changes			
Highest vs Average Performance	$\beta_5 \ge 0$	-0.00021	-7.8400	< 0.0001	
Average vs Low Performance	$\beta_5-\beta_8\leq 0$	0.00023	7.1388	<0.0001	
Low vs Lowest Performance	$\beta_8-\beta_{11}\leq 0$	0.00048	11.2190	<0.0001	
Highest vs Low Performance	$\beta_8 \ge 0$	-0.00044	-12.8125	<0.0001	
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00069	-15.5004	<0.0001	

Congestive Heart Failure

		Estimate	t value	Pr(> t)	
	Estimation of trends				
Pre-law slope:					
Highest Performance	$b_{10} \ge 0$	0.00005	9.5679	1	
Average Performance	$b_{11} \ge 0$	0.00011	25.0038	1	
Low Performance	$b_{12} \ge 0$	0.00018	25.7388	1	
Lowest Performance	$b_{13} \ge 0$	0.00021	21.1372	1	
Post-law slope:					
Highest Performance	$b_{20} \ge 0$	-0.00186	-108.6577	<0.0001	
Average Performance	$b_{21} \ge 0$	-0.00202	-145.1441	<0.0001	
Low Performance	$b_{22} \ge 0$	-0.00230	-103.2998	<0.0001	
Lowest Performance	$b_{23} \ge 0$	-0.00256	-83.4753	<0.0001	
		Pre-pos	t analysis		
Highest Performance	$\beta_2 \ge 0$	-0.00192	-92.3966	<0.0001	
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00214	-126.6699	<0.0001	
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00249	-92.2619	<0.0001	
Lowest Performance	$\beta_2+\beta_{11}\geq 0$	-0.00277	-74.6455	<0.0001	
	Diffe	erences in pre-µ	oost RSRR chai	nges	
Highest vs Average Performance	$\beta_5 \ge 0$	-0.00022	-8.2388	<0.0001	
Average vs Low Performance	$\beta_5 - \beta_8 \le 0$	0.00035	11.0680	<0.0001	
Low vs Lowest Performance	$\beta_8 - \beta_{11} \le 0$	0.00063	15.4661	<0.0001	
Highest vs Low Performance	$\beta_8 \ge 0$	-0.00057	-16.8213	<0.0001	
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00085	-20.0146	<0.0001	

Pneumonia

		Estimate	t value	Pr(> t)
		Estimation	of trends	
Pre-law:	1 ~ 0	0.00007	13.6270	1
Highest Performance	$b_{10} \ge 0$	0.00007	10.0270	•
Average Performance	$b_{11} \ge 0$	0.00008	18.8280	1
Low Performance	$b_{12} \ge 0$	0.00009	13.8986	1
Lowest Performance	$b_{13} \ge 0$	0.00007	7.7242	1
Post-law:		-0.00108	-70.1762	<0.0001
Highest Performance	$b_{20} \ge 0$	-0.00108	-70.1762	<0.0001
Average Performance	$b_{21} \ge 0$	-0.00118	-94.5132	<0.0001
Low Performance	$b_{22} \ge 0$	-0.00131	-65.5789	<0.0001
Lowest Performance	$b_{23} \ge 0$	-0.00150	-54.5870	<0.0001
		Pre-post analysis		
Highest Performance	$\beta_2 \ge 0$	-0.00115	-61.6526	<0.0001
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00126	-83.1599	< 0.0001
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00140	-57.9230	<0.0001
Lowest Performance	$\beta_2+\beta_{11}\geq 0$	-0.00157	-47.1929	<0.0001
	Diffe	rences in pre-p	ost RSRR cl	nanges
Highest vs Average Performance	$\beta_5 \ge 0$	-0.00011	-4.5770	<0.0001
Average vs Low Performance	$\beta_5 - \beta_8 \le 0$	0.00015	5.1025	<0.0001
Low vs Lowest Performance	$\beta_8 - \beta_{11} \le 0$	0.00031	8.5386	<0.0001
Highest vs Low Performance	$\beta_8 \ge 0$	-0.00026	-8.3624	<0.0001
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00042	-11.0651	<0.0001



Sensitivity Analysis #1: Weighting RSRRs by hospital volume

		Estimate	t value	Pr(> t)
		Estimatio	n of trends	
Pre-law:		-0.00006	-13.2687	<0.0001
Highest Performance	$b_{10} \ge 0$	-0.00006	-13.208/	<0.0001
Average Performance	$b_{11} \geq 0$	0.00001	1.6380	1
Low Performance	$b_{12} \ge 0$	0.00008	15.9822	1
Lowest Performance	$b_{13} \ge 0$	0.00011	15.4363	1
Post-law:		-0.00161	-106.7374	<0.0001
Highest Performance	$b_{20} \ge 0$	-0.00161	-106./3/4	<0.0001
Average Performance	$b_{21} \geq 0$	-0.00177	-143.9503	<0.0001
Low Performance	$b_{22} \ge 0$	-0.00206	-114.1310	<0.0001
Lowest Performance	$b_{23} \ge 0$	-0.00234	-93.2037	<0.0001
		Pre-post	analysis	
Highest Performance	$\beta_2 \ge 0$	-0.00155	-86.8687	<0.0001
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00177	-121.8563	<0.0001
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00214	-100.3351	< 0.0001
Lowest Performance	$\beta_2 + \beta_{11} \ge 0$	-0.00245	-82.6862	<0.0001
	Dij	fferences in pre-	post RSRR chang	ies
Highest vs Average Performance	$\beta_5 \geq 0$	-0.00022	-9.6945	<0.0001
Average vs Low Performance	$\beta_5 - \beta_8 \le 0$	0.00037	14.3095	<0.0001
Low vs Lowest Performance	$\beta_8-\beta_{11}\leq 0$	0.00068	20.6370	<0.0001

Sensitivity Analysis #2: Changing the "pre-law" time period to 15 months from 40 months

Sensitivity Analysis #2: Combined Conditions

		Estimate	t value	Pr(> t)
		Estimation o	f trends	
Pre-law:				
Highest Performance	$b_{10} \ge 0$	-0.00006	-4.6060	<0.0001
Average Performance	$b_{11}\geq 0$	0.00001	0.5952	1
Low Performance	$b_{12} \ge 0$	0.00006	3.1532	1
Lowest Performance	$b_{13} \ge 0$	0.00003	1.4417	1
Post-law:		-0.00175	-145.7843	<0.0001
Highest Performance	$b_{20} \ge 0$			<0.0001
Average Performance	$b_{21} \ge 0$	-0.00190	-189.8664	<0.0001
Low Performance	$b_{22} \ge 0$	-0.00211	-129.5209	<0.0001
Lowest Performance	$b_{23} \ge 0$	-0.00233	-104.4657	<0.0001
		Pre-post ai	nalysis	
Highest Performance	$\beta_2 \ge 0$	-0.00169	-75.5710	<0.0001
Average Performance	$\beta_2+\beta_5\geq 0$	-0.00190	-102.2564	<0.0001
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00216	-71.3536	<0.0001
Lowest Performance	$\beta_2+\beta_{11}\geq 0$	-0.00236	-56.9100	<0.0001
	Diff	ferences in pre-po	st RSRR changes	
Highest vs Average Performance	$\beta_5 \ge 0$	-0.00021	-7.2036	<0.0001
Average vs Low Performance	$\beta_5 - \beta_8 \le 0$	0.00026	7.3160	<0.0001
Low vs Lowest Performance	$\beta_8-\beta_{11}\leq 0$	0.00046	10.1068	<0.0001
Highest vs Low Performance	$\beta_8 \geq 0$	-0.00047	-12.4694	<0.0001
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00067	-14.1942	<0.0001

Sensitivity Analysis #2: Acute Myocardial Infraction

		Estimate	t value	Pr(> t)
		Estimatio	n of trends	
Pre-law:	h >0	-0.00070	-32.1951	<0.0001
Highest Performance	$b_{10} \ge 0$	-0.00070	-32.1331	<0.0001
Average Performance	$b_{11} \ge 0$	-0.00065	-38.2389	<0.0001
Low Performance	$b_{12} \ge 0$	-0.00059	-21.5692	<0.0001
Lowest Performance	$b_{13} \ge 0$	-0.00058	-14.6941	<0.0001
Post-law: Highest Performance	$b_{20} \geq 0$	-0.00225	-112.0764	<0.0001
Average Performance	$b_{21} \geq 0$	-0.00241	-154.0793	<0.0001
Low Performance	$b_{22} \ge 0$	-0.00257	-102.1953	< 0.0001
Lowest Performance	$b_{23} \ge 0$	-0.00274	-75.2282	<0.0001
		Pre-posi	t analysis	
Highest Performance	$\beta_2 \ge 0$	-0.00155	-41.4350	< 0.0001
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00176	-60.4654	< 0.0001
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00198	-42.3103	< 0.0001
Lowest Performance	$\beta_2+\beta_{11}\geq 0$	-0.00216	-31.8338	<0.0001
	Dij	fferences in pre-	post RSRR chang	es
Highest vs Average Performance	$\beta_5 \ge 0$	-0.00021	-4.4323	<0.0001
Average vs Low Performance	$\beta_5 - \beta_8 \le 0$	0.00022	4.0256	<0.0001
Low vs Lowest Performance	$\beta_8-\beta_{11}\leq 0$	0.00040	5.3758	<0.0001
Highest vs Low Performance	$\beta_8 \ge 0$	-0.00043	-7.2079	<0.0001
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00061	-7.8369	<0.0001

Sensitivity Analysis #2: Congestive Heart Failure

		Estimate	t value	Pr(> t)
		Estimatio	n of trends	
Pre-law:				
Highest Performance	$b_{10} \ge 0$	0.00005	9.5679	1
Average Performance	$b_{11} \ge 0$	0.00011	25.0038	1
Low Performance	$b_{12} \ge 0$	0.00018	25.7388	1
Lowest Performance	$b_{13} \ge 0$	0.00021	21.1372	1
Post-law:		-0.00186	-108.6577	40.0001
Highest Performance	$b_{20} \ge 0$			<0.0001
Average Performance	$b_{21} \geq 0$	-0.00202	-145.1441	<0.0001
Low Performance	$b_{22} \ge 0$	-0.00230	-103.2998	<0.0001
Lowest Performance	$b_{23} \ge 0$	-0.00256	-83.4753	<0.0001
	0.00	Pre-post analysis		
Highest Performance	$\beta_2 \ge 0$	-0.00192	-92.3966	<0.0001
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00214	-126.6699	<0.0001
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00249	-92.2619	<0.0001
Lowest Performance	$\beta_2+\beta_{11}\geq 0$	-0.00277	-74.6455	<0.0001
		Differences in pre-	post RSRR chang	es
Highest vs Average Performance	$\beta_5 \ge 0$	-0.00022	-8.2388	<0.0001
Average vs Low Performance	$\beta_5 - \beta_8 \le 0$	0.00035	11.0680	<0.0001
Low vs Lowest Performance	$\beta_8-\beta_{11}\leq 0$	0.00063	15.4661	<0.0001
Highest vs Low Performance	$\beta_8 \ge 0$	-0.00057	-16.8213	<0.0001
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00085	-20.0146	<0.0001

Sensitivity Analysis #2: Pneumonia

		Estimate	t value	Pr(> t)
		Estimatio	n of trends	
Pre-law:				
Highest Performance	$b_{10} \ge 0$	0.00002	1.4310	1
Average Performance	$b_{11}\geq 0$	0.00006	4.3563	1
Low Performance	$b_{12} \ge 0$	0.00010	4.5480	1
Lowest Performance	$b_{13} \ge 0$	0.00007	2.3691	1
Post-law:		-0.00111	-72.2234	<0.0001
Highest Performance	$b_{20} \ge 0$			<0.0001
Average Performance	$b_{21}\geq 0$	-0.00122	-97.1453	<0.0001
Low Performance	$b_{22} \ge 0$	-0.00136	-67.1342	<0.0001
Lowest Performance	$b_{23} \ge 0$	-0.00154	-55.4687	<0.0001
		Pre-post	analysis	
Highest Performance	$\beta_2 \ge 0$	-0.00114	-39.5979	<0.0001
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00127	-54.6757	<0.0001
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00146	-38.6788	<0.0001
Lowest Performance	$\beta_2+\beta_{11}\geq 0$	-0.00161	-31.1503	<0.0001
	Dif	ferences in pre-	post RSRR chang	ies
Highest vs Average Performance	$\beta_5 \geq 0$	-0.00014	3.6917	<0.0001
Average vs Low Performance	$\beta_5 - \beta_8 \le 0$	0.00018	4.1178	<0.0001
Low vs Lowest Performance	$\beta_8-\beta_{11}\leq 0$	0.00034	5.9228	<0.0001
Highest vs Low Performance	$\beta_8 \geq 0$	-0.00032	-6.7333	<0.0001
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00047	-7.9882	<0.0001

Sensitivity Analysis #3: Including hospital characteristics, combined conditions

		Estimate	t value	Pr(> t)	
		Estimation o	f trends		
Pre-law: Highest Performance	$b_{10} \ge 0$	0.00001	3.2830	1	
Average Performance	$b_{11} \geq 0$	0.00005	17.5900	1	
Low Performance	$b_{12} \ge 0$	0.00010	20.8261	1	
Lowest Performance	$b_{13} \ge 0$	0.00011	16.6044	1	
Post-law: Highest Performance	$b_{20} \geq 0$	-0.00177	-151.1803	<0.0001	
Average Performance	$b_{21} \ge 0$	-0.00190	-197.1479	<0.0001	
Low Performance	$b_{22} \ge 0$	-0.00212	-135.4318	<0.0001	
Lowest Performance	$b_{23} \ge 0$	-0.00235	-110.1394	<0.0001	
		Pre-post ar	nalysis		
Highest Performance	$\beta_2 \ge 0$	-0.00178	-126.6670	<0.0001	
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00196	-168.6317	< 0.0001	
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00222	-118.1063	<0.0001	
Lowest Performance	$\beta_2 + \beta_{11} \ge 0$	-0.00246	-95.9651	<0.0001	
	Differences in pre-post RSRR changes				
Highest vs Average Performance	$\beta_5 \ge 0$	-0.00018	-9.7920	<0.0001	
Average vs Low Performance	$\beta_5 - \beta_8 \leq 0$	0.00027	11.9974	<0.0001	
Low vs Lowest Performance	$\beta_8 - \beta_{11} \le 0$	0.00050	17.8811	<0.0001	
Highest vs Low Performance	$\beta_8 \ge 0$	-0.00044	-18.8947	<0.0001	
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00068	-23.3174	<0.0001	
		Hospital chard	acteristics		
Rural hospital	= 0	-0.00036	-6.7225	<0.0001	
Major teaching hospital	= 0	0.00193	20.5682	<0.0001	
Minor teaching hospital	= 0	-0.00027	-4.7520	0.00017	
Public hospital	= 0	-0.00049	-6.2806	<0.0001	
Private, Non-profit hospital	= 0	-0.00009	-1.4838	0.75844	
Patient age (mean)	= 0	0.00006	3.1840	0.01518	
Proportion of white patients	= 0	-0.00415	-17.3360	<0.0001	
Proportion of black patients	= 0	0.00092	3.4997	0.00501	
Male (%)	= 0	-0.00753	-11.7533	<0.0001	
Patient volume	= 0	0.00000	-6.7169	<0.0001	
Proportion of dual-eligibles	= 0	0.00122	6.1705	<0.0001	

Sensitivity Analysis #3: Acute Myocardial Infraction

		Estimate	t value	Pr(> t)
		Estimat	tion of trends	
Pre-law:	$b_{10}\geq 0$	-0.00064	-170.9225	<0.0001
Highest Performance	$b_{11} \geq 0$			1010001
Average Performance	$b_{12} \geq 0$	-0.00059	-194.4766	<0.0001
Low Performance	$b_{13}\geq 0$	-0.00056	-113.4513	<0.0001
Lowest Performance		-0.00052	-76.3794	<0.0001
Post-law: Highest Performance	$b_{20} \geq 0$	-0.00233	-188.2349	<0.0001
Average Performance	$b_{21} \ge 0$	-0.00244	-244.1526	<0.0001
Low Performance	$b_{22} \geq 0$	-0.00256	-158.4160	<0.0001
Lowest Performance	$b_{23} \ge 0$	-0.00269	-118.6734	<0.0001
		Pre-po	ost analysis	
Highest Performance	$\beta_2 \ge 0$	-0.00169	-114.6344	<0.0001
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00185	-154.7056	<0.0001
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00200	-103.6301	<0.0001
Lowest Performance	$\beta_2 + \beta_{11} \ge 0$	-0.00217	-80.1406	<0.0001
	$\beta_5 \ge 0$	Differences in p	re-post RSRR changes	
Highest vs Average Performance	$\beta_5 = 0$ $\beta_5 - \beta_8 \le 0$	-0.00015	-8.1604	<0.0001
Average vs Low Performance		0.00015	6.7378	<0.0001
Low vs Lowest Performance	$\beta_8 - \beta_{11} \le 0$	0.00032	10.8069	<0.0001
Highest vs Low Performance	$\beta_8 \ge 0$	- 0.00031	-12.6695	<0.0001
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00047	-15.3988	<0.0001
		Hospital	characteristics	
Rural hospital	= 0	-0.00009	-1.6166	0.65648
Major teaching hospital	= 0	0.00104	11.1836	<0.0001
Minor teaching hospital	= 0	-0.00033	-5.8298	<0.0001
Public hospital	= 0	0.00017	2.1226	0.28686
Private, Non-profit hospital	= 0	0.00017	2.5648	0.09992
Patient age (mean)	= 0	0.00012	6.2197	<0.0001
Proportion of white patients	= 0	-0.00395	-14.4037	<0.0001
Proportion of black patients	= 0	-0.00052	-1.7628	0.54145
Male (%)	= 0	-0.00369	-5.3865	<0.0001
Patient volume	= 0	0.00000	-3.2668	0.01134
Proportion of dual-eligibles	= 0	-0.00095	-4.5770	<0.0001

Sensitivity Analysis #3:Congestive Heart Failure

		Estimate	t value	Pr(> t)
		Estima	tion of trends	
Pre-law:		0.00008	15.2699	1
Highest Performance	$b_{10} \geq 0$			1
Average Performance	$b_{11} \ge 0$	0.00013	32.4597	1
Low Performance	$b_{12} \ge 0$	0.00021	30.8679	1
Lowest Performance	$b_{13}\geq 0$	0.00023	25.1938	1
Post-law:		0.00100	117 5200	~ 0.0001
Highest Performance	$b_{20} \ge 0$	-0.00190	-117.5308	<0.0001
Average Performance	b ₂₁ ≥ 0	-0.00205	-154.0767	<0.0001
Low Performance	b ₂₂ ≥ 0	-0.00233	-108.2854	<0.0001
Lowest Performance	$b_{23}\geq 0$	-0.00258	-87.9183	<0.0001
	$\beta_2 \ge 0$	Pre-p	ost analysis	
Highest Performance	$\beta_2 + \beta_5 \ge 0$	-0.00197	-101.8319	<0.0001
Average Performance	$\beta_2 + \beta_8 \ge 0$	-0.00218	-136.6942	<0.0001
Low Performance	$\beta_2 + \beta_{11} \ge 0$	-0.00254	-98.1405	<0.0001
Lowest Performance	12 111 -	-0.00281	-79.7041	<0.0001
		Differences in p	re-post RSRR changes	
Highest vs Average Performance	$\beta_5 \geq 0$	-0.00021	-8.4409	<0.0001
Average vs Low Performance	$\beta_5 - \beta_8 \le 0$	0.00036	11.6861	<0.0001
Low vs Lowest Performance	$\beta_8 - \beta_{11} \le 0$	0.00062	16.1422	<0.0001
Highest vs Low Performance	$\beta_8 \ge 0$	-0.00057	-17.5526	<0.0001
Highest vs Lowest Performance	$\beta_{11} \ge 0$	-0.00084	-20.8032	<0.0001
		Hospital	characteristics	
Rural hospital	= 0	-0.00026	-3.5360	0.00435
Major teaching hospital	= 0	0.00229	17.7105	<0.0001
Minor teaching hospital	= 0	-0.00050	-6.3873	<0.0001
Public hospital	= 0	-0.00062	-5.7756	<0.0001
Private, Non-profit hospital	= 0	-0.00038	-4.3805	0.00015
Patient age (mean)	= 0	0.00012	4.7372	<0.0001
Proportion of white patients	= 0	-0.00644	-19.3862	<0.0001
Proportion of black patients	= 0	-0.00063	-1.7251	0.57426
Male (%)	= 0	-0.00999	-11.2950	<0.0001
Patient volume	= 0	0.00000	-12.3906	<0.0001
Proportion of dual-eligibles	= 0	0.00127	4.6705	<0.0001

MASSACHUSETTS
GENERAL HOSPITAL

CORRIGAN MINEHAN
HEART CENTER

Sensitivity Analysis #3:Pneumonia

		Estimate	t value	Pr(> t)		
		Es	timation of trends			
Pre-law:						
Highest Performance	$b_{10} \ge 0$	0.00012	26.0915	1		
Average Performance	$b_{11} \ge 0$	0.00013	33.8971	1		
Low Performance	$b_{12} \ge 0$	0.00014	22.5689	1		
Lowest Performance	$b_{13} \ge 0$	0.00012	13.7194	1		
Post-law:						
Highest Performance	$b_{20} \ge 0$	-0.00115	-76.4339	<0.0001		
Average Performance	$b_{21} \ge 0$	-0.00124	-100.6287	<0.0001		
Low Performance	$b_{22} \ge 0$	-0.00137	-68.5551	< 0.0001		
Lowest Performance	$b_{23}\geq 0$	-0.00155	-56.8436	<0.0001		
			Pre-post analysis			
Highest Performance	$\beta_2 \ge 0$	-0.00127	-70.4034	<0.0001		
Average Performance	$\beta_2 + \beta_5 \ge 0$	-0.00137	-92.5484	<0.0001		
Low Performance	$\beta_2 + \beta_8 \ge 0$	-0.00151	-62.9134	<0.0001		
Lowest Performance	$\beta_2 + \beta_{11} \ge 0$	-0.00167	-50.8664	<0.0001		
		Differences in pre-post RSRR changes				
Highest vs Average Performance	$\beta_5 \ge 0$	-0.00011	-4.5230	<0.0001		
Average vs Low Performance	$\beta_5 = 0$ $\beta_5 - \beta_8 \le 0$	0.00014	4.9424	<0.0001		
Low vs Lowest Performance	$\beta_8 - \beta_{11} \le 0$	0.00029	8.1437	<0.0001		
Highest vs Low Performance	$\beta_8 \ge 0$	-0.00025	-8.1616	<0.0001		
Highest vs Lowest Performance	$\beta_{11} \geq 0$	-0.00040	-10.6580	<0.0001		
		Hos	pital characteristics			
Rural hospital	= 0	-0.00042	-6.2202	<0.0001		
Major teaching hospital	= 0	0.00214	17.8148	<0.0001		
Minor teaching hospital	= 0	-0.00009	-1.2689	0.88700		
Public hospital	= 0	-0.00040	-4.0285	0.00060		
Private, Non-profit hospital	= 0	0.00014	1.7035	0.59162		
Patient age (mean)	= 0	0.00002	0.6555	0.99907		
Proportion of white patients	= 0	-0.00211	-6.8838	<0.0001		
Proportion of black patients	= 0	0.00215	6.4015	<0.0001		
Male (%)	= 0	-0.00587	-7.1394	<0.0001		
Patient volume	= 0	0.00000	3.9225	0.00092		
Proportion of dual-eligibles	= 0	0.00118	4.6447	<0.0001		

