The Consumer Reports **Guide to Trials** Trials on Trial: What Can Be Done to **Preserve and Sustain RCTS in the Future** AHA/QCOR Plenary Session, 2016 Phoenix, AZ

> Sanjay Kaul, MD, FACC, FAHA Division of Cardiology Cedars-Sinai Medical Center Los Angeles, California

Duality of Interests

Advisor/Consultant

- United States FDA
- Consultant
 - Boehringer Ingelheim
 - AstraZeneca
 - Takeda
- Stocks/Equity
 - Johnson & Johnson

The Laws of Diminishing Objectivity in the Interpretation of Evidence

• vehemence α eminence²

Peter McCulloch The Lancet, 2004;363;9004

Randomized Controlled Trial (RCT)

- Greatest medical invention ever
 - Methodological paragon for assessing evidence
- Randomization ensures similar groups at start and assignment is fair
 - Balances measured and unmeasured covariates
- Double blinding ensures a level playing field
 - Can't favor one arm over the other
- Incentives encourage rigorous study conduct
 - Sloppiness makes arms more similar

Hallmarks of a Good Randomized Controlled Trial

- Random concealed allocation
- Double blinding
- Intention to treat analysis
- Simple, large scale and pragmatic
- Unrestricted patient population
- Adequate power to minimize false positive & negative errors
- Easily ascertained, clinically important, hard endpoints
- Risk benefit analysis
- Cost effectiveness analysis

Evidence Standards

FDA/CDER "Substantial evidence of Effectiveness" FDA/CDRH (PMA) "Reasonable assurance of Safety and Efficacy" FDA/CDRH (510k) "Substantial evidence of Equivalence" ACC/AHA "Useful and Effective" CMS "Reasonable and Necessary" "Usual and Customary" Payers "Prudent and Cautious" Courts Consumer Reports "Reliable and meaningful"

Standards for Developing Trustworthy Clinical Practice Guidelines: IOM Report

- Establishing Evidence Foundations (Standard 5)
 - Quality of evidence
 - Quantity of evidence (magnitude and precision)
 - Consistency of aggregate available evidence
 - Clear description of benefits and harms
 - Rating of strength of recommendation

http://www.iom.edu/Reports/2011/Clinical-Practice-Guidelines-We-Can-Trust.aspx

Quantity of Evidence Necessary to Support Effectiveness of Drugs and Biologics: FDA

CFR	Statutory criterion
FDC Act 1962	"Substantial" evidence of effectiveness consisting of "adequate and well-controlled investigations", i.e., two separate trials each with $p<0.05 (0.05 \times 0.05 = 0.0025 divided by 2 = 0.001)$
FDA Evidence Guidance for Industry, 1998	"A highly persuasive statistical finding (a p value <0.001) in a single trial with some other indication of the study's reliability (e.g., multicenter with no center driving the results)"
FDAMA 115 (1998)	"One adequate and well-controlled study and confirmatory evidence."

Replication Probability and P-values

P value of initial expt.	Probability of p<0.05 when the first observed difference is true
0.10	.37
0.05	.50
0.03	.58
0.01	.73
0.005	.80
0.001	.91

'Replication is at the heart of scientific endeavor'

Goodman, SN, "A Comment on Replication, P-values and Evidence, *Stat Med*, 11:875-879, 1992.

Foundations of Classical Statistical Inference PURSUIT Trial (Death or MI)

		N	Event Rate (%)
Eptifib	atide	4722	14.2
Con	trol	4739	15.7
RRR	95%	CI	P (2-tailed)
9%	1%-1	8%	0.04

Objective:

 Evaluate impact of eptifibatide on adverse cardiac outcomes in patients with NSTE ACS

Sample size estimation:

 Study powered to detect a minimum clinically important difference (δ) of 20% risk reduction

Conclusion:

 Eptifibatide is superior to aspirin and heparin in NSTE ACS

Does the evidence justify strong recommendation?

What Does a P(ee) Value of 0.05 Mean?

'Fisherian' P value of 0.05 is arbitrary and originally based on n=30!

Always demand a P value
 of <0.001 for a sample size
 > 200 as strong evidence
 against the null hypothesis
 of zero difference

AI Feinstein

Bayes Factor Quantifying Strength of Evidence

Bayes' theorem (Reverend Thomas Bayes, 1763)
 Posterior odds = prior odds x evidence (Bayes factor)

Bayes factor

- $BF = Prob (Data/H_0)/Prob (Data/H_1) (likelihood ratio)$
- H_0 = Null hypothesis; H_1 = alternative hypothesis
- Odds = Probability/(1-Probability)
- Probability = Odds/(1+Odds)
- Minimum BF = $exp(-0.5z^2)$

Bayes factor is a comparison of how well two hypotheses predict the data: smaller the BF, stronger the evidence against H_0

Evaluating Strength of Evidence by Bayes Factor PURSUIT (Death or MI)

Minimum Bayes factor

- z = 2.032
- P value = 0.04
- Minimum BF = $\exp(-0.5z^2) = 0.13$
- Prior null probability = 0.50
- Prior null odds = 0.50/(1-0.50) = 1
- Posterior null odds = $1 \times 0.13 = 0.13$
- Posterior null probability = 0.13/(1+0.13) = 0.11

P Value	Minimum	Decrease in Hyp	Strength of	
(Z SCORE) Dayes Facto		From	To No Less Than	Evidence
0.04	0.12	75	28	
0.04 (2.03)	(1/7 7)	50	11	Moderate
(2.03)	(1/7-7)	25	4	

Relationship Between P values & Bayes Factor

P Value	Minimum	MinimumDecrease in Probability of Hypothesis, %		ull Strength of
	Dayes Factor	From	To No Less Than	
0.10 (1.64)	0.26 (1/3.8)	75 50 17	44 21 5	Weak
0.05 (1.96)	0.15 (1/6.8)	75 50 26	31 13 5	Moderate
0.03 (2.17)	0.095 (1/11)	75 50 33	22 9 5	Moderate
0.01 (2.58)	0.036 (1/28)	75 50 60	10 3.5 5	Moderate to Strong
0.001 (3.28)	0.005 (1/216)	75 50 92	1 0.5 5	Strong to very strong

P value overstates the strength of evidence against null hypothesis
 As the strength of evidence increases (smaller P value), the discrepancy between P value and Bayes factor becomes negligible

"There is a tendency to make the measurable important,

rather than the important measurable"

Robert S. McNamara

Statistical Significance vs. Clinical Importance

- MDD (minimum detectable difference, " δ ")
 - The "minimum difference" the study is powered to detect
 - Utilized for sample size estimation
 - May or may not reflect a clinically important difference (driven by financial constraints, restricted availability and follow up, etc)

MCID (minimum clinically important difference)

The "minimum acceptable difference" to change the behavior of the clinician, patient, payer or policy maker, given the side effects, costs and inconveniences of therapeutic interventions

Statistical Significance vs. Clinical Importance MCID Threshold for UA/NSTEMI ACS

"In ACS, a relative reduction of 15% in recurrent clinical events has recently been considered clinically important (GUSTO I); <u>this</u> <u>level is far below the perceived threshold that drove the sample</u> <u>size calculations for clinical trials just a decade ago</u>. As we develop more incrementally beneficial therapies, it is likely that the minimally important clinical difference will become even smaller."

> *Califf and DeMets Circulation.* 2002;106:1015

Statistical Significance vs. Clinical Importance Strength of Evidence

Statistically not significant, clinically not important

Statistically not significant, may be clinically important

Statistically significant, not clinically important

Statistically significant, may be clinically important

Statistically significant, clinically important

MCID = minimal clinically important difference = 15% RRD

Statistical Significance vs. Clinical Importance Class I, LOE A Recommendations for UA/NSTEMI Impact on Death or MI

Intervention	Control (%)	Rx (%)	Summary risk ratio (95% Cl)	P Value	NNT (95% CI)	Interpretation of Confidence Intervals (MCID = 15% RRR)
Aspirin (N=2,856)	12.8	5.5	0.43 (0.33-0.56)	<0.01	14 (11-19)	Statistically significant and clinically important (E)
UFH (N=1,353)	10.4	7.9	0.67 (0.44-1.02)	0.06	44 (∞-18)	Statistically not significant, maybe clinically important (B)
Enoxaparin (Early invasive)	12.8	12.1	0.96 (0.88-1.05)	0.35	171 (∞-59)	Statistically not significant, clinically not important (A)
Clopidogrel (CURE)	11.4	9.3	0.82 (0.74-0.92)	<0.01	54 (35-120)	Statistically significant, maybe clinically important (D)
GP IIb/IIIa (Early invasive)	14.5	11.8	0.81 (0.70-0.94)	0.007	37 (21-139)	Statistically significant, maybe clinically important (D)

Aspirin is the only intervention listed as a performance measure!

Judging the Strength of Evidence Summary

- Statistical significance tells us whether a difference is likely to be real (P value)
- Clinical importance tells us whether the difference is small or large, trivial or important ("oomph" value)
- Guidelines currently emphasize statistical significance over clinical importance
- Ideally, assessment of both statistical significance and clinical importance should aid in optimal utilization of therapeutic interventions in clinical practice

Standards for Developing Trustworthy Clinical Practice Guidelines: IOM Report

- Establishing Evidence Foundations (Standard 5)
 - Quality of evidence
 - Quantity of evidence (magnitude and precision)
 - Consistency of aggregate available evidence
 - Clear description of benefits and harms
 - Rating of strength of recommendation

http://www.iom.edu/Reports/2011/Clinical-Practice-Guidelines-We-Can-Trust.aspx

Factors that Modify the Quality of Evidence And Should be Considered Explicitly in CPGs

↓ Quality

Important limitations

- Study design or execution (bias)
 - Randomization
 - Lack of concealment
 - Inadequate blinding
 - ITT principle violated
 - Loss to follow-up
 - Early stopping for benefit
 - Indirectness of results
 - Inconsistency of results
 - Imprecision
- Publication bias

↑ Quality

Special strengths

- Magnitude of effect
 - RR<0.5 or >2.0 (large)
 - RR<0.2 or >5.0 (very large)
- Dose-response gradient
- All plausible confounding would underestimate effect or all plausible biases would overestimate effect

ATLAS ACS-2 TIMI 51 Rivaroxaban (Anti-Xa Inhibitor) in ACS

Mega et al, NEJM 2012;366:9-19

Missing Data in Contemporary ACS Trials ATLAS ACS-2 TIMI 51

Trial Name	Study Agent	Enrolled (N)	Follow-up (Median)	Incomplete follow up N (%)	Withdrawal of consent N (%)	Vital status unknown N (%)
ATLAS	Rivaroxaban	15,526	484 d	2402 (15.5)	1294 (8.9)	1117 (7.2)
APPRAISE-2	Apixiban	7,392	241 d	131 (1.8)	81 (1.1)	NR
TRACER	Vorapaxar	12,944	502 d	761 (5.9)	NR	249 (1.9)
PLATO	Ticagrelor	18,624	277 d	562 (3.0)	545 (2.9)	2 (0.01%)
TRITON	Prasugrel	13,619	14.5 m	804 (5.9)	665 (4.9)	16 (0.12)

Relatively high rate of withdrawal of consent & missing vital status in ATLAS
 Differential dropout for MACE (12.4% Riva vs. 11% placebo)

Krantz M and Kaul S, JACC 2013

Impact of Missing Data Sensitivity Analysis to Assess 'Missingness' Tolerability

Group	Stratum	Rivaroxaban	Placebo	Relative Risk (95% Cl)	Excess # event , Riva
	All	626/10229 (6.1)	376/5113 (7.4)	0.84 (0.74-0.96)	40
	All	<mark>666</mark> /10229 (6.5)	376/5113 (7.4)	089 (0.78-1.00)	40
Pooled	2	575/9532 (6.0)	340/4760 (7.1)	0.86 (0.75-0.98)	22
	(+ DAPT)	<mark>598</mark> /9532 (6.3)	340/4760 (7.1)	0.88 (0.77-1.00)	20
	All	313/5114 (6.1)	376/5113 (7.4)	0.84 (0.72-0.97)	12
		<mark>326</mark> /10229 (6.4)	376/5113 (7.4)	0.87 (0.75-1.00)	
2.5 mg	2	286/4765(6.0)	340/4760 (7.1)	0.85 (0.72-0.99)	7
	(+ DAPT)	293/4765 (6.2)	340/4760 (7.1)	0.86 (0.74-1.00)	

Number of potential excess events in Rivaroxaban arm to overturn significance relatively low, indicating fragility of treatment benefit (intolerable 'missingness')

Krantz M and Kaul S, JACC 2013

Impact of Missing Data Sensitivity Analysis in ATLAS ACS-2 TIMI 51

Incomplete follow up for Rivaroxaban:	2192
Excess Rivaroxaban events to p>0.05:	7 to 40
% Patients with TIMI major/minor bleeds who experience MACE:	37%
No. of TIMI major minor bleeds to yield 7-40 excess MACE (7/0.37 to 40/0.37)	19 to 108
No. of Rivaroxaban incomplete f/u, no MACE, but TIMI major/minor bleed	<mark>98</mark>

More bleeding with Rivaroxaban & incomplete f/u can explain MACE difference

FDA Briefing Document 2012

Missing Data & Informative Censoring TIMI Major or Minor Bleeding in ATLAS

Group	Incomplete f/u (per 100 PY)	Complete f/u (per 100 PY)	Ratio
Placebo	3.1	0.9	3
2.5 mg Riva	6.3	1.4	4.5
5 mg Riva	9	1.8	5

In patients with complete follow-up, MI rates were 2 to 3-fold \uparrow , and mortality rates 5-fold \uparrow in patients who experienced bleeding vs. those who did not

↑ bleeding led to both subject withdrawals and to ↑ MACE
 Differential dropout and informative censoring biases results in favor of Riva

FDA Briefing Document 2012

Do Missing Data Have a Material Impact on the ATLAS ACS-2 Results?

- Loss to follow-up rate exceeds the outcome event rate: Yes
- Missing data < 5% (or >20%): No (No)
- Missing data differential by treatment group and related to Rx: Yes
- Reasonable sensitivity analyses yield different results: Yes

Totality of evidence suggests the potential for missing data in ATLAS to have a material impact on trial interpretation

Krantz M and Kaul S, JACC 2013

Handling Missing Data in Clinical Trials National Research Council, 2010

The NEW ENGLAND JOURNAL of MEDICINE

SPECIAL REPORT

The Prevention and Treatment of Missing Data in Clinical Trials

Roderick J. Little, Ph.D., Ralph D'Agostino, Ph.D., Michael L. Cohen, Ph.D., Kay Dickersin, Ph.D., Scott S. Emerson, M.D., Ph.D., John T. Farrar, M.D., Ph.D., Constantine Frangakis, Ph.D., Joseph W. Hogan, Sc.D., Geert Molenberghs, Ph.D., Susan A. Murphy, Ph.D., James D. Neaton, Ph.D., Andrea Rotnitzky, Ph.D., Daniel Scharfstein, Sc.D., Weichung J. Shih, Ph.D., Jay P. Siegel, M.D., and Hal Stern, Ph.D.

'Prevention' of missing data rather than 'treatment' remains the optimal approach to limit the problem and consequently enhance the credibility of causal inferences from clinical trials

Little et al, NEJM 2012;367:1355-50

Randomized Clinical Trial Stopped Early Balancing Contrasting Goals

"Overly sanguine estimates of treatment effect result in misleading risk-benefit ratios, misguided practice recommendations, and suboptimal clinical practice"

Montori et al, JAMA 2005; 294:2203-2209

Premature Stopping of Trials Recent Examples

- Trials stopped with prespecified stopping rules SPRINT, PARADIGM-HF, JUPITER
- Trials stopped without prespecified stopping rules
 - FAME-II (FFR in PCI; enrollment and follow-up truncated!)
 - PRAMI (PCI of non-infarct artery)
- Trials generally stopped for:
 - Unacceptable safety ("primum non nocere")
 - Futility (ACCELERATE; CETP inhibitor evacetrapib)
 - Overwhelming benefit
 - Primary endpoint (SPRINT, JUPITER)
 - Primary endpoint and/or mortality (PARADGM-HF)
 - New external information of unequivocal efficacy & safety

Perioperative Beta-blockade (POBB) in High-Risk Patients Undergoing Vascular Surgery Perils of Early Stopping

Stopping rule
 O'Brein-Fleming (P=0.001)

- 1st interim analysis at 112 pts RR 0.09 (0.02 to 0.37) P<0.001
- Planned to recruit 266 pts
- Expected RRR = 50%
- Implausible treatment effect
- Widely disseminated
- Changed practice guidelines
- Performance measure
- Never been replicated
- Recent meta-analyses show harm

Poldermans et al. NEJM 1999;341:1789-1794

Monitoring for Benefit in CHARM Trial Perils of Early Stopping

• Stopping rule Haybittle-Peto (P<0.001) • 4th interim analysis OR = 0.76 (0.64-0.87) Logrank P=0.0006• Final analysis OR = 0.91 (0.83-1.00) P = 0.055

"Random high" within the 1st year ("too good to be true") "Regression to the truth" beyond 1st year

Pocock et al, Clinical Trials 2006; 3: 513-521

Standards for Developing Trustworthy Clinical Practice Guidelines: IOM Report

- Establishing Evidence Foundations (Standard 5)
 - Quality of evidence
 - Quantity of evidence (magnitude and precision)
 - Consistency of aggregate available evidence
 - Clear description of benefits and harms
 - Rating of strength of recommendation

http://www.iom.edu/Reports/2011/Clinical-Practice-Guidelines-We-Can-Trust.aspx

ACC/AHA Guideline Recommendations Glycoprotein IIb/IIIa Inhibitor for UA/NSTEMI

	Class I	Cla	Class III	
	(Benefit >>> risk) (<i>Highly recommended</i>)	lla (Benefit >>risk) (<i>Reasonably</i> recommended)	llb (Benefit <u>></u> risk) (<i>May be considered</i>)	(Risk / No Benefit) (<i>Not recommended</i>)
Level A (Multiple randomized clinical trials)	High risk patients oriented to early invasive strategy (before or at PCI) Eptifibatide or tirofiban preferred			Abciximab in whom PCI not planned
Level B (Single randomized trial or nonrandomized studies			"Upstream" use in high-risk pts (↑Tn, DM, ST↓) on ASA & clopidogrel and at low risk for bleeding	Low TIMI risk score or high bleeding risk and who are on ASA, Clopidogrel
Level C (Consensus opinion, case studies, or standard of care)		Recurrent ischemia during early conservative Rx with ASA, UFH, and clopidogrel		

Wright RS, Anderson JL et al. 2011; Jneid H et al, JACC/Circulation 2012

Primary Composite Endpoint in PURSUIT Death or Nonfatal MI

Benefit driven by nonfatal MI, primarily defined by biomarker elevation

Benefit-Risk Balance in PURSUIT 1000 Patients Treated with Eptifibatide Instead of Placebo

Does the evidence favor Class I (benefit >>> risk) recommendation for eptifibatide in ACS?

Quantification of Net Clinical Benefit Balance Sheet of NNT and NNH (PURSUIT)

harms are equal)

Consumer Reports Guide Interpreting 'Positive' (P<α) Trials

Rank	Quality	Quantity	Benefit-Risk
****	High	 Large effect size Statistically persuasive 	B>>>R
***	High	 Modest effect size Statistically persuasive 	B>>R
***	Modest	 Modest effect size Statistically persuasive 	B>R
**	Modest	 Small effect size Statistically not persuasive 	B>R
*	Low	 Small effect size Statistically not persuasive 	B=/ <r< th=""></r<>

Impactful RCTs of Last Two Years

PARADIGM-HF (AHA/NEJM 2014)

- Sacubitril + Valsartan vs. Valsartan + Placebo in CHF (NYHA Class > II + EF < 40%)

• IMPROVE-IT (AHA 2014, NEJM 2015)

- Ezetimibe + Simvastatin vs. Simvastatin + Placebo post-Acute Coronary Syndrome

• EMPA-REG OUTCOME (EASD/NEJM 2015)

- Empagliflozin (SGLT2 inhibitor) vs. Placebo in Type 2 Diabetes

SPRINT (AHA/NEJM 2015)

- Intensive vs. Standard BP control in patients with SBP>130mmHg + increased CV risk

Impactful RCTs of Last Two Years Key Quality Attributes

Trial	Туре	Blind	Power (1-β)	MDD (δ)	Missing data	Prematurely stopped
PARADIGM-HF (N=8,442)	Superiority	DB	80%	RR 0.85	0.2%	Yes*
IMPROVE-IT (N=18,144)	Superiority	DB	90%	RR 0.91	11%	No
EMPA-REG OUTCOME (N=7,042)	Noninferiority (NI) Superiority (S)	DB	90% 80%	HR 1.30 (NI) HR 0.785 (S)	3%	No
SPRINT (N=9,361)	Superiority	OL	88.7%	RR 0.80	5.5%**	Yes***

OL=open label; DB=double blind; MDD=minimal detectable difference; β =type II error

* based on PEP & mortality (overwhelming benefit: P=0.001 @ 3rd interim analysis)

**lost to follow up (N=245), withdrew consent (N=275); ? impact of missing data on outcomes explored

*** not clear if based on overwhelming benefit in PEP alone or mortality as well

Impactful RCTs of Last Two Years Quantity of Evidence

		Out			
Trial	Endpoint	RR (95% CI)	RR P % CI) value		Substantial evidence
PARADIGM-HF (N=8,442)	CVD, HF hosp.	0.80 (0.73, 0.87)	<0.0001	<0.0001	Yes
	CVD ACM	0.80 (0.71, 0.89) 0.84 (0.76, 0.93)	<0.0001 <0.001	0.0003 0.0035	Yes Yes
IMPROVE-IT (N=18,144)	CVD, MI, Stroke	0.94 (0.89, 0.99)	0.016	0.06	No
EMPA-REG OUTCOME (N=7,042)	CVD, MI, Stroke	0.86 (0.74, 0.99)	0.038	0.131	No
	CVD ACM	0.62 (0.49, 0.77) 0.68 (0.57, 0.82)	0.0001 0.0001	0.0004 0.0006	Yes Yes
SPRINT (N=9,361)	CVD, MI/ACS,	0.75 (0.64, 0.89)	<0.001	0.004	Yes
	CVD ACM	0.57 (0.38, 0.85) 0.73 (0.60, 0.90)	0.005 0.003	0.021 0.014	Yes Yes

Consumer Reports Guide Interpreting 'Positive' (P<α) Trials

Rank	Quality	Quantity		Quantity Benefit- Risk	
****	High	•	Large effect size Statistically persuasive	B>>>R	- PARADIGM-HF - EMPA-REG (mortality)
***	High	•	Modest effect size Statistically persuasive	B>>R	
***	Modest	•	Modest effect size Statistically persuasive	B>R	SPRINT
**	Modest	•	Small effect size Statistically not persuasive	B>R	IMPROVE-IT
*	Low	•	Small effect size Statistically not persuasive	B=/ <r< th=""><th>(PURSUIT)</th></r<>	(PURSUIT)

"Evidence-Based" Not "Evidence-Bound" Three Key Dimensions

"There are no facts, only interpretations" Friedrich Nietzsche

Consumer Reports Guide to Interpreting Trials Conclusions

- Statistical significance vs clinical importance
 - Develop validated, domain-specific thresholds for clinical importance
 - Apply during trial design & interpretation
 - Evidence appraisal (regulatory approval, reimbursement, guidelines)

Missing data

- Potential to invalidate ITT analysis (best to 'prevent', no good 'treatment')
- Use multiple imputation methods/worst case scenario to assess impact

Premature truncation

- Pre-specify stopping rules
- Unacceptable safety, futility and overwhelming benefit (preferably mortality)

Composite endpoints

- Avoid clinically unimportant and unvalidated outcomes
- Assess for large treatment gradients (heterogeneity of treatment effect)

Consumer Reports Guide to Interpreting Trials Conclusions

Noninferiority

- Margin should be based on clinical judgment and statistical reasoning
- New Rx should offer tangible ancillary benefits (safety, cost, convenience)

Subgroup analysis

- Prespecified based on biological plausibility or prior evidence; pre-randomization
- Test for interaction
- Minimize multiple subgroups, plan ahead and adjust for multiplicity

Benefit-risk assessment

- Qualitative science grounded in quantitative data & dependent on judgment
- Effect size, seriousness of events, and availability of safer alternatives should drive benefit-risk tradeoffs
- Incorporate patient's views of acceptable risk (values and preferences)
- Evolve from the mindset to "ensure drug safety" to ensure "favorable benefit-risk profile"