Careers in Clinical Trials and Epidemiology

Robert A. Harrington MD, FACC, FSCAI
Professor of Medicine
Director, Duke Clinical Research Institute
Duke University Medical Center
Conflicts Relevant to this Presentation

http://www.dcri.duke.edu/research/coi.jsp
Careers in Clinical Trials and Epidemiology

- Why clinical research (trials, epi, outcomes)
- Career options/opportunities
- Training/mentorship
- Funding, $$, and COI issues
- Balance
Why a Career in Cardiovascular Clinical Investigation?

- Heart disease globally increasing as population ages
- Medicare not sustainable in current form
- Promise of genomic advances is slow in translating into important new therapeutics
- Personalized medicine is obviously needed but surprisingly elusive
- Clinical research is increasingly complex, expensive, and difficult to integrate into clinical care
- Enormous gap between new knowledge and practice of medicine
Societal Forces Promoting Need for Evidence in Medicine

- Clinicians-Patients
 - Relationship between EBM and outcomes
- Marketing and labeling—FDA
 - Proving efficacy and safety
- Reimbursement—CMS, Major Insurers
 - Pay for Performance (Quality)
- Practice Guidelines—Performance Indicators
 - Role of professional societies
CVD—A Global Epidemic

2002
World pop.: ~6.12 billion
Deaths: 56.6 million
CVD deaths: 16.6 million

- CVD 30%
- Infectious diseases 13%
- Cancer 13%
- Injuries 9%
- Resp. diseases 6%
- Other 17%
- Perinatal conditions 6%

High income
Low and middle income

Global Epidemic of CVD

1990: 25% of all deaths were from CVD.

2020: 40% of all deaths will be from CVD.

In developing countries, MI and CVD deaths occur 10–20 years earlier.

- CVD deaths < 70 y.o. in developing countries: 50%
- CVD deaths < 70 y.o. in Western countries: 20%

—Reddy KS. NEJM 2004
Guidelines: Weighing the Evidence

- **Weight of evidence grades:**
 - A = Data from many randomized clinical trials
 - B = Data from single randomized trial or nonrandomized studies
 - C = Expert consensus
Guidelines: Classes of Recommendation

I IIa IIb III

- Intervention is useful and effective
- Evidence conflicts/opinions differ but lean towards efficacy
- Evidence conflicts/opinions differ but lean against efficacy
- Intervention is not useful/effective and may be harmful
Rofecoxib, Merck, and the FDA

Failing the Public Health — Rofecoxib, Merck, and the FDA
Eric J. Topol, M.D.

Raising the Safety Bar — The FDA’s Coxib Meeting
Susan Okie, M.D.
Randomized trials of DES (for single simple lesions, stable patients) show less restenosis, a small (borderline significant) excess of late thrombosis, and no increase in death or MI.

Registries show increased late death, perhaps related to stopping clopidogrel.

Overall evidence suggests benefits outweigh risks for "on-label" use, and clopidogrel out to (at least) one year seems prudent.
“Off-label” use in 50-70% of DES cases and associated with about twice the risk of adverse events

- Observational data – but adjusted
- Absolute risk is uncertain
 - No randomized trials yet
 - Certain types of lesions and patients limited experience with BMS (L main, Bifurcation, ostial, multivessel CAD, etc)
Hospital Link Between Overall Guidelines Adherence and Mortality

Every 10% ↑ in guidelines adherence → 10% ↓ in mortality (OR=0.90, 95% CI: 0.84-0.97)

Peterson E et al, JAMA 2006;295:1863-1912
CMS Pay For Performance (Quality) Pilot

- CMS announced new pilot program to “pay for quality”
- 400 PREMIER hospitals
- 5 initial conditions (MI, CABG, CHF, pneumonia, hip/knee replacement)
- 35 health plans covering more than 30 million US patients have programs tying performance with bonus payments
- Mark McClellan, CMS Director, suggests that Pay for Performance based compensation will account for 20-30% of physician compensation in the next 5+ years

-USA Today, July 11, 2003
-Wall Street Journal Sept 17, 2004
The Cycle of Clinical Therapeutics—New Model

Concept → Clinical Trials → Outcomes → Performance → Guidelines → Performance Indicators → Pay for Performance → Education and Feedback

Adapted from Califf RM, Peterson ED et al. JACC 2002;40:1895-901
First Block: Translation from concept into first human studies

Second Block: Translation from clinical trials into practice
<table>
<thead>
<tr>
<th>Therapy</th>
<th>Indication</th>
<th># pts</th>
<th>Relative</th>
<th>Absolute</th>
<th>C/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>MI</td>
<td>18,773</td>
<td>23%</td>
<td>2.4%</td>
<td>++++</td>
</tr>
<tr>
<td>Fibrinolytics</td>
<td>MI</td>
<td>58,000</td>
<td>18%</td>
<td>1.8%</td>
<td>++++</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>MI</td>
<td>28,970</td>
<td>13%</td>
<td>1.3%</td>
<td>++++</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>MI</td>
<td>101,000</td>
<td>6.5%</td>
<td>.6%</td>
<td>+</td>
</tr>
<tr>
<td>Aspirin</td>
<td>2nd prev</td>
<td>54,360</td>
<td>15%</td>
<td>1.2%</td>
<td>++++</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>2nd prev</td>
<td>20,312</td>
<td>21%</td>
<td>2.1%</td>
<td>++++</td>
</tr>
<tr>
<td>Statins</td>
<td>2nd prev</td>
<td>17,617</td>
<td>23%</td>
<td>2.7%</td>
<td>++++</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>2nd prev</td>
<td>9,297</td>
<td>17%</td>
<td>1.9%</td>
<td>++++</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>CHF</td>
<td>7,105</td>
<td>23%</td>
<td>6.1%</td>
<td>++++</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>CHF</td>
<td>12,385</td>
<td>26%</td>
<td>4%</td>
<td>++++</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>CHF</td>
<td>1,663</td>
<td>30%</td>
<td>11%</td>
<td>++++</td>
</tr>
</tbody>
</table>

-Adapted from Granger CB and McMurray JJV. JACC 48:434;2006
Through coordinated efforts, the medical community can help transform the clinical researcher from an endangered to an emerging species.

The discrepancy between current medical practice and the capabilities for improvement is greater now than at any time since the early part of the last century.
Clinical Research Career Opportunities

- Public Health
- Epidemiology
- Biostatistics
- Bioinformatics
- Designing trials
- Coordinating trials
- Enrolling patients
- Outcomes research
- Quality of life
- Cost-effectiveness
- Health care policy assessment
Fellow Training: Key Elements

- Didactic experience (assembling the tools: MPH, masters in clinical research, or simply courses)
- Practical experience (on a team, exposure/responsibility for various functions)
 - Proposal development, sample size, budget, regulatory, operational planning, recruitment, data management
- Analytic/writing experience (formulate question, design analytic plan, perform analysis, interpret, present, write)
 - Writing is key
- Culture valuing clinical research
- Mentor: motivator, advocate, advisor, role model
Key Variables for Academic Success:
An Informal Survey of Clinical Investigators and Fellows

1. What characteristics do you see as most vital for the success of a new clinical investigator? For an established clinical investigator? List up to five for each.

2. What is the ideal split of time between clinical work and research time for a new clinical investigator? For an established clinical investigator?
Key Variables for Academic Success: New Clinical Investigator

- Mentorship, mentorship, mentorship...
- Resources: time and start-up funds
- Didactic training
 - communication skills
 - research methods
 - regulatory requirements
- Supportive culture (environment of research)
- Personal characteristics
 - curious, focus, patience, perseverance, humility
Identifying Mentors:
Issues to Consider

- Career role model
- Content expertise
- Methodological expertise
- Track record producing independent clinical researchers
- Interest in and time for mentoring
- Team mentoring
High-Quality Clinical Research: “It’s Not a Hobby”

- Requires mastery of a diverse, multidisciplinary body of technical knowledge and skills
- Expertise often distributed throughout a group, instead of confined to a single individual
- Group members expert on certain functions, cross-trained on others
Career Myths and Realities: Didactic Training

- Traditional view: clinical researcher needs to be expert clinician; statistician will run numbers

- Modern advice: get formal training in research methods, operations, quantitative methods
Didactic Training in Clinical Research: Core Elements

- **Biostatistics**
 (descriptive, estimation, hypothesis testing)

- **Principles of clinical research**
 (objectives, hypotheses, population, outcomes)

- **Clinical trials**
 (protocol, sample size, randomization, end points)

- **Ethical issues**
 (consent, conflict of interest, regulatory)

- **Research management**
 (budget, finances, project management, regulatory, etc.)
Didactic Training in Clinical Research: Elective Elements

- Advanced statistical topics
- Coordination of multi-center RCTs
- Molecular genetics of disease
- Computational genomics/proteomics
- Health services research
- Health economics
Fellow Training: Predictors of Success in Clinical Research in Academic Medicine

- Enough experience to know if research makes you happy
 - "when love and need are one"
- Early exposure to research in fellowship
- "Protected time" and dedicated funding
- Transition plan at end of fellowship
 - NIH awards, faculty transition positions
- Passion
Key Variables for Academic Success:
Established Clinical Investigator

- Mentorship
- Funding
- Communication skills
- Networking ability
- Dedicated time
 - balance administrative and clinical duties
- Supportive culture
 - ability to collaborate across disciplines
Clinical Investigation Career:
Myths and Realities

- Traditional advice: working on large multi-center projects is a bad career move

- Modern advice: future impact projects will be large, collaborative endeavors, not single investigator initiatives
Site Enrollment as Academic Involvement

- Enroll patients
 - access to therapies; better care
- Look at protocol, science, volume, budget
- Creativity is in management
- Creation of systems: Coordinators, contracts, regulatory, negotiation, teaching
- Leverage success to broader role
 - access to data; writing groups
 - steering committees
Clinical Research Funding

Source:
- Device firms
- Biotech firms
- Pharma firms
- Private
- State/local
- Federal—non-NIH
- NIH

Funding ($ in billions)

- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003

Reproduced from Moses et al., JAMA 2005;294:1333-42
Alternative Sources of Funding—Bottom Line

- Traditional NIH funding is the minority of research funding
- Alternative sources require different tactics
- Depending on your career aspirations, alternative sources may be preferable
- The best strategy is to find out what you are really passionate about, then develop the tactics to secure the funding you need!
Non-NIH Sources

- Other Federal Agencies
 - AHRQ
 - CDC
 - CMS
 - VA
 - DOD

- Medical Products Industry
 - Pharma, biotech, devices

- Foundations
Industry-Clinical Relationships in Research: Competing or Complementary Forces?

Patients/Society
- Useful products
- Improve health/QOL
- Affordable

Health Products
- Useful products
- Maximize market
- Shareholder value

Clinicians/Scientists
- Useful products
- Help patients
- Understand disease
- Grants/publications

Duke Clinical Research Institute
DUKE UNIVERSITY MEDICAL CENTER
The Cycle of Research Depends on the Clinician

Scientific Discovery → Observation and Surrogates → RCT → Observation and Outcomes → Scientific Discovery
Preparing for Clinical Research Career: Conclusions/Advice

- Define your objective ("career specs")
- Identify mentors
- Get didactic training
- Apprentice on a successful research team
- Do your own research projects
- Immerse yourself in culture of research
“There are those who wander around on the wards and those who are doctors. The difference is in having the data.”

-EA Stead Jr.
Former Chair, DOM
Founder, Duke CV Databank
Founder, PA Profession