High-Dose Intranasal Insulin During CPR Improves Neurological Outcomes In A Rat Model Of Asphyxial Cardiac Arrest

Tulasi Ram Jinka, DVM, PhD
Department of Emergency Medicine
Michigan Center for Integrative Research in Critical Care (MCIRCC)
University of Michigan Medical School
No conflicts of interest

AHA's Strategically Focused Research Networks (SFRN) : Arrhythmias and Sudden Cardiac Death
How is Insulin Neuroprotective?

Intravenous insulin causes dose-dependent brain AKT phosphorylation

Sanderson Neurol Res 2013

High-dose intravenous insulin (20 U/kg) is neuroprotective in rat model of transient global brain ischemia

Sanderson J Neurochem 2008
Why Trans-nasal Delivery?

- Bypasses Blood Brain Barrier
- Rapid CNS delivery
- Negligible systemic effects
- Simple non-invasive administration
- Feasibility of initiating during CPR

Human Clinical trials of Intranasal insulin:
- Alzheimer’s disease (NCT02462161)
- Ischemic stroke (NCT02810392)
- Parkinson’s disease (NCT02064166)
Hypothesis

High-dose intranasal insulin (HD-IN-I) administered during CPR improves neurologic outcomes in a rat model of asphyxial cardiac arrest.
Experimental Design

Target Engagement Study
- Asphyxial cardiac arrest (8min)
 - Tran-nasal placebo (n=6)
 - Tran-nasal insulin (1.9U/g brain wet weight) (n=6)
 - Sham (n=3)

 Euthanasia & brain collection @ 30-minutes post-ROSC

 Western blot (Hippocampus)

 Phosphorylated Akt

 Phosphorylated Insulin Receptor

Outcome Study
- Asphyxial cardiac arrest (8min) Block randomized blinded study
 - Tran-nasal placebo (n=14)
 - Tran-nasal insulin (1.9U/g brain wet weight) (n=14)
 - Sham (n=14)

 Behavioral testing
 - Day7-10: Rotarod & Barnes maze
 - Day9-10: Passive avoidance

 10-day survival
 Euthanize, brain removal, histology

Treatment
Insulin or placebo delivered in a total volume of 40 microliters (20 microliters into each nostril) at the onset of CPR.
Target Engagement Study

p<0.05 Intranasal insulin vs Placebo & Sham (1W-ANOVA; Tukey Posthoc). Data expressed as mean ± SD

* p<0.05 Intranasal insulin vs Placebo & Sham (1W-ANOVA; Tukey Posthoc). Data expressed as mean ± SD
Outcome Study: ROSC and Survival

ROSC Rates

- Placebo: 100% (14/14)
- Insulin: 71% (10/14)
- 43% (6/14)

Chi-Square: $P = 0.55$

Survival Curve

- Sham: 100% (14/14)
- Insulin: 71% (10/14)
- Placebo: 43% (6/14)

Log-Rank: $P = 0.12$; Insulin vs Placebo
Outcome Study: Serum Glucose

P > 0.05; 2W ANOVA with RM
Data expressed as mean ± SD
Outcome Study: Rotarod

Latency to fall off the rotarod (seconds)

- Sham
- Placebo
- Insulin

* p<0.05 Intranasal insulin vs Placebo. 2W ANOVA with RM
Data expressed as mean ± SD
Barnes Maze

Latency to enter into escape box (seconds)

* p<0.05 Intranasal insulin vs Placebo. 2W ANOVA with RM

Data expressed as mean ± SD
Passive Avoidance

Latency to enter into dark chamber (seconds)

- Sham
- Placebo
- Insulin

* p<0.05 Intranasal insulin vs Placebo. 2W ANOVA with RM
Data expressed as mean ± SD
Limitations

• Young healthy rats with no co-morbidities

• Sex as biological variable was not evaluated

• Dose-response, therapeutic window, duration of therapy not tested

• Synergistic/additive effect with hypothermia not tested

• Single severity of injury tested
Summary

Study Findings

High Dose Intranasal Insulin during CPR resulted in:

- Hippocampal Akt phosphorylation within 30 minutes of post-ROSC
- Improved behavioral function

Future Directions

- Brain distribution studies
- Dose optimization
- Therapeutic window
- Effectiveness in large animal models
- Maximum tolerated dose in humans
Acknowledgements

Tulasi Jinka
Adam D Chalek
Joseph M Wider
Kathleen J Maheras
Amanda Qvigstad
Erin Gruley
Sarita Raghunayakula
Jinhui Liao
Xiaodan Ren
Rui Zhang
Thomas H Sanderson
Robert W Neumar
High-Dose Intranasal Insulin During CPR Improves Neurological Outcomes In A Rat Model Of Asphyxial Cardiac Arrest

Tulasi Ram Jinka, DVM, PhD
Department of Emergency Medicine
Michigan Center for Integrative Research in Critical Care (MCIRCC)
University of Michigan Medical School
Hippocampal CA1 Pyramidal Layer Histology

CA1 Pyramidal Neuron Counts

- Sham
- Placebo
- Insulin

* Significant difference
Evidence for trans-nasal insulin in brain

- **p** = 0.074

- **p**_{AUC 0-120} = 0.6

- **z-values**

- Amygdala fALFF change

- Placebo, Insulin 40U, Insulin 80U, Insulin 160U

- Plasma glucose (mmol/l)

- 0 U, 40 U, 80 U, 160 U

- Time after spray application (minutes)