Results of the Fontan Udenafil Exercise Longitudinal (FUEL) Trial

David J. Goldberg, MD
Presenting on behalf of the FUEL Writing Committee and the Investigators of the Pediatric Heart Network

November 17, 2019
Disclosure

• This trial was conducted by the Pediatric Heart Network, funded by NIH / NHLBI, with financial support from the sponsor, Mezzion Pharma Co. Ltd.

• The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of NHLBI, NIH, DHHS, or Mezzion

• Dr. Goldberg and Dr. Paridon receive grant support from Mezzion and are co-inventors of patent US10137128B2
Background

• The Fontan operation is the final step in the staged palliation of the heterogeneous forms of congenital heart disease characterized by a functional single ventricle
 • Hypoplastic left heart syndrome, tricuspid atresia, double inlet left ventricle, pulmonary atresia with intact ventricular septum
• This procedure creates a total cavopulmonary connection, allowing for systemic venous return to bypass the heart and flow passively into the pulmonary arteries
Background

• The circulation created by Fontan palliation is characterized by elevated central venous pressure and low cardiac output.

• In this physiology, pulmonary vascular resistance plays a critical role in allowing for the efficient flow of blood through the lungs without the benefit of a ventricular pump.

• While this circulation is typically stable through childhood, cardiovascular efficiency deteriorates over time, associated with a decline in exercise performance.
Background

• Given the importance of pulmonary vascular resistance, modulators of PVR make sense as potential therapies

• Udenafil is a novel PDE5 inhibitor that has undergone Phase I/II testing in adolescents after Fontan (PHN / Mezzion)

• 87.5 mg twice daily was associated with the highest average serum concentration, with no dose-limiting adverse events

• In the FUEL Trial, we evaluate the effect of 87.5 mg of udenafil, given twice daily, on exercise performance in adolescents who have undergone Fontan palliation
Inclusion:
1. Currently on anticoagulation
2. Fluent in English, Spanish, Korean

Exclusion:
1. Small body size
2. Significant co-morbidities
3. Current therapy with a pulmonary vasodilator
4. Peak VO₂ <50% predicted on a recent clinical exercise test

30 sites in North America and Republic of Korea

Adolescents 12 to <19 y with Fontan physiology

Baseline exercise test: max effort (RER ≥1.1)?

No → Ineligible

Yes → Randomize

Udenafil, 87.5 mg BID

Matching placebo

Primary Endpoint: Change in Peak VO₂ from baseline to 26 weeks

Key secondary endpoints:
1. Exercise measures at VAT
2. Myocardial performance index
3. Reactive hyperemia index
4. Brain natriuretic peptide
Statistical Analyses

• Primary efficacy endpoint: Between group difference in change in peak VO$_2$ from baseline to 26-weeks

• Sample size determined by number of participants needed to detect a 10% between-group difference with 90% power, assuming within-patient correlation of 0.33 and 15% dropout

• For primary outcome, missing data imputed as equal to baseline

• ANCOVA with fixed factors for ventricular morphology and continuous covariate of baseline peak VO$_2$
Results

1376 patients screened

400 randomized

200 udenafil
- 2 unable to generate 26-week maximal exercise test
- 9 did not complete testing

189 completed testing

200 placebo
- 5 unable to generate 26-week maximal exercise test
- 5 did not complete testing

190 completed testing
Baseline Characteristics, Mean ± SD / n (%)

<table>
<thead>
<tr>
<th></th>
<th>Udenafil (n=200)</th>
<th>Placebo (n=200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>15.4 ± 2.0</td>
<td>15.6 ± 2.0</td>
</tr>
<tr>
<td>Female</td>
<td>89 (44%)</td>
<td>72 (36%)</td>
</tr>
<tr>
<td>White</td>
<td>169 (84%)</td>
<td>155 (78%)</td>
</tr>
<tr>
<td>Left ventricle</td>
<td>94 (47%)</td>
<td>95 (48%)</td>
</tr>
<tr>
<td>Fenestration</td>
<td>73 (36%)</td>
<td>58 (29%)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>162 ± 10</td>
<td>165 ± 9</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>57 ± 14</td>
<td>59 ± 13</td>
</tr>
<tr>
<td>BMI</td>
<td>22 ± 4</td>
<td>22 ± 4</td>
</tr>
</tbody>
</table>
Exercise Data, Mean ± SD (n)

<table>
<thead>
<tr>
<th></th>
<th>Udenafil</th>
<th>Placebo</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Change</td>
<td>Baseline</td>
</tr>
<tr>
<td>Peak VO₂ (ml/kg/min)</td>
<td>27.8±6.9 (200)</td>
<td>-0.23±4.1 (200)</td>
<td>28.0±6.6 (200)</td>
</tr>
<tr>
<td>Peak VO₂ (ml/min)</td>
<td>1562±437 (200)</td>
<td>44±245 (200)</td>
<td>1627±414 (200)</td>
</tr>
<tr>
<td>Peak heart rate (bpm)</td>
<td>165±20 (200)</td>
<td>-1.4±11 (189)</td>
<td>168±22 (199)</td>
</tr>
<tr>
<td>O₂ sat at peak (%)</td>
<td>89.2±5.3 (195)</td>
<td>0.4±3.4 (186)</td>
<td>89.8±5.0 (197)</td>
</tr>
<tr>
<td>VO₂ at VAT (ml/min)</td>
<td>1039±301 (170)</td>
<td>33±185 (155)</td>
<td>1021±280 (181)</td>
</tr>
<tr>
<td>Work rate at VAT (W)</td>
<td>66.2±26 (167)</td>
<td>3.8±16 (152)</td>
<td>66.1±23 (177)</td>
</tr>
<tr>
<td>VE/VCO₂ at VAT</td>
<td>34.3±4.9 (170)</td>
<td>-0.8±3.7 (155)</td>
<td>34.8±5.2 (181)</td>
</tr>
</tbody>
</table>

P value represents between group difference in change in variable from baseline to 26-weeks.
Relative Improvement in Exercise Measures

- Change in Peak VO₂ (mL/min): P=0.071
- Change in VO₂ at VAT (mL/min): P=0.012
- Change in Work Rate at VAT (watts): P=0.021
Secondary Outcomes, Mean ± SD (n)

<table>
<thead>
<tr>
<th></th>
<th>Udenafil</th>
<th>Placebo</th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Change</td>
<td>Baseline</td>
<td>Change</td>
</tr>
<tr>
<td>MPI</td>
<td>0.44±0.21 (150)</td>
<td>-0.02±0.11 (122)</td>
<td>0.45±0.16 (155)</td>
<td>-0.01±0.19 (128)</td>
</tr>
<tr>
<td>lnRHI</td>
<td>0.46±0.24 (184)</td>
<td>0.07±0.30 (163)</td>
<td>0.47±0.33 (186)</td>
<td>0.05±0.37 (165)</td>
</tr>
<tr>
<td>Log BNP</td>
<td>2.46±1.00 (200)</td>
<td>0.08±0.90 (187)</td>
<td>2.27±1.14 (199)</td>
<td>0.03±1.13 (191)</td>
</tr>
</tbody>
</table>

P value represents between group difference in change in variable from baseline to 26-weeks
<table>
<thead>
<tr>
<th>Safety</th>
<th>Udenafil</th>
<th>Placebo</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache / migraine</td>
<td>69 (35%)</td>
<td>50 (25%)</td>
<td>0.049</td>
</tr>
<tr>
<td>Facial flushing</td>
<td>32 (16%)</td>
<td>12 (6%)</td>
<td>0.002</td>
</tr>
<tr>
<td>Increased erection (males only)</td>
<td>13 (12%)</td>
<td>2 (2%)</td>
<td>0.002</td>
</tr>
<tr>
<td>Abdominal pain / discomfort</td>
<td>13 (7%)</td>
<td>13 (7%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>11 (6%)</td>
<td>3 (2%)</td>
<td>0.053</td>
</tr>
<tr>
<td>Dizziness</td>
<td>9 (5%)</td>
<td>15 (8%)</td>
<td>0.29</td>
</tr>
<tr>
<td>Nausea / vomiting</td>
<td>10 (5%)</td>
<td>11 (6%)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

P value represents between group difference in listed adverse event
Limitations

• This study did not include detailed hemodynamics (e.g., cardiac catheterization or cardiac MRI)

• Based on exclusion criteria, these results may not apply to patients with significant co-morbidities or very low peak VO₂

• The duration of the trial precluded long-term assessment of safety, addressed in the FUEL Open-Label Extension Trial
Conclusion

• Treatment with udenafil (87.5 mg bid) was:
 • Not associated with a statistically significant improvement in oxygen consumption at peak exercise
 • Associated with statistically significant improvements in sub-maximal exercise performance measured at the ventilatory anaerobic threshold
 • Not associated with changes in myocardial performance index, reactive hyperemia index, or log BNP
 • Well-tolerated and safe, with adverse events limited to those known to be associated with PDE5 inhibitors
Clinical Implications

• Our study extends recent findings highlighting the importance of sub-maximal exercise in the understanding of Fontan physiology

• Unlike peak VO₂, sub-maximal exercise is not constrained by the physiologic ceiling of central venous pressure inherent in exercise physiology after Fontan palliation

• An improvement in sub-maximal exercise has real implications for the day-to-day activities of adolescents with Fontan physiology

• This is first large clinical trial to show improvements in measures of clinically relevant exercise performance in those with single ventricle heart disease after Fontan palliation
Acknowledgements

• This work could not have been completed without the contributions of the PHN investigators and study coordinators and the support of NIH / NHLBI

• Thank you to Mezzion Pharma and the staff at Healthcare / New England Research Institutes

• Thank you to the advocacy groups that supported this effort

• Thank you to all of the children that agreed to participate in the FUEL Trial and the families that dealt with the logistics