Discussion: FRANCE-TAVI registry

Dharam J. Kumbhani, MD, SM, MRCP, FACC, FAHA, FSCAI

Section Chief, Interventional Cardiology
Director, Cardiac Catheterization Laboratory, Clements University Hospital
Associate Professor of Medicine
UT Southwestern Medical Center, Dallas, TX
Disclosures

None
SAVR

High-risk
Intermediate-risk
Low-risk

TAVR

Inoperable/Extreme-risk

Which valve? Class effect?

Mechanical valve
Asymptomatic
Bicuspid AS

Otto CM, Kumbhani DJ. JACC 2017
SOLVE-TAVI

STS 7.8%
Sapien S3 (n=219) vs. Evolut R (n=219)

- 30-DAY MOD/SEVERE PVL: Sapien S3 1.9 vs. Evolut R 2.3, p=0.77
- 30-DAY MORTALITY: Sapien S3 1.4 vs. Evolut R 2.8, p>0.99

Thiele H. TCT 2018

CHOICE

STS ≥ 10%/inoperable
Sapien XT (n=121) vs. CoreValve (n=120)

- 30-DAY MOD/SEVERE PVL: Sapien XT 4.1 vs. CoreValve 5.1, p=0.77
- 30-DAY MORTALITY: Sapien XT 4.1 vs. CoreValve 5.1
- 1-YEAR MORTALITY: CoreValve 12.8

Abdel-Wahab M. JAMA 2014; Abdel-Wahab M. JACC 2015

CENTER registry

STS 6.5%
BE (n=4,096) vs. SE (n=4,096)*

- 30-DAY MOD/SEVERE PVL: BE 5.3 vs. SE 3.1
- 30-DAY MORTALITY: BE 6.2 vs. SE 3.4
- 30-DAY MORTALITY (S3/EV): BE 3.1 vs. SE 3.4, p=0.73

*Propensity-matched

Vlastra W. EHJ 2019
FRANCE-TAVI registry

- 2013-2015
- 48/50 sites
- EuroSCORE: 14.5%
- High risk: 37%
- TF access: 81%
- Conscious sedation: 47%
- No ViV

- BE (n=3910) vs. SE (n=3910)
- Sapien S3 (n=2440) vs. Evolut (2,435)

- IN-HOSP MOD/SEVERE PVL
 - 8.3
 - 4.2

- IN-HOSP MORTALITY
 - 15.5
 - 5.6

- 2-YEAR MORTALITY
 - 29.8

p<0.001
p=0.002
p=0.01
p=0.001

IN-HOSP MOD/SEVERE PVL
IN-HOSP MORTALITY
2-YEAR MORTALITY

CV mortality
Things to consider

• Hazardous to make causal inferences from observational data

• Biological plausibility
 • Valve design: Less radial strength with SE vs. BE
 • Association of PVL with mortality
Severity of PVL at 30 Days and All-cause Mortality at 2 Years

Number at risk:
- Moderate/Severe: 36
- Mild: 210
- None/Trace: 701

All-Cause Mortality (%)

- Months from Procedure
 - 0: 14.1%
 - 10: 13.5%
 - 20: 34.0%
 - 30: 34.0%

Overall Log-Rank p = 0.001
Mod/Sev (reference = None/Trace)
p (Log-Rank) < 0.001

Mild (reference = None/Trace)
p (Log-Rank) = 0.82

Kodali S. NEJM 2012
Things to consider

• Hazardous to make causal inferences from observational data

• Biological plausibility
 • Valve design: Less radial strength with SE vs. BE
 • Association of PVL with mortality
 • Early hazard: patient or device? Are sicker patients receiving SE valves?
 • Other complications: ↑ pacemaker rate with SE vs. BE – can impact mortality
 • Valve hemodynamics, EOA ↑, patient-prosthesis mismatch ↓ with SE vs. BE

• Not completely contemporary (2015; valve generations?), no echo core lab

• Other more recent data

Hahn R. JACC CV Img. 2019
Herrmann H. JACC 2018
Kumbhani DJ. JACC 2016
Echocardiographic Valve Performance

Paravalvular Aortic Regurgitation

- P < 0.0001
- ACURATE neo (n = 361)
 - ≥ moderate: 9.4%
 - mild: 50.1%
 - none: 40.4%

- SAPIEN 3 (n = 363)
 - ≥ moderate: 2.8%
 - mild: 31.1%
 - none: 66.1%

Mean Gradient ≥20 mmHg AND EOA ≤ 0.9-1.1 cm² and/or DVI < 0.35

- P = 0.06
- ACURATE neo (n = 361)
 - yes: 0.6%
 - no: 99.4%

- SAPIEN 3 (n = 363)
 - yes: 2.2%
 - no: 97.8%

Mortality

2.5% vs. 0.8%, p=0.09
FlexNav DS Cohort: Clinical Outcomes at 30 Days

Primary endpoint: 7% major vascular complications

<table>
<thead>
<tr>
<th>VARC 2 Endpoint</th>
<th>RCT Portico valve (N=381)</th>
<th>RCT Commercial valve (N=369)</th>
<th>FlexNav DS Cohort (N=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-Cause Mortality</td>
<td>3.5%</td>
<td>1.9%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Cardiovascular Mortality</td>
<td>3.2%</td>
<td>1.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Disabling Stroke</td>
<td>1.6%</td>
<td>1.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Life-Threatening Bleeding Requiring Transfusion</td>
<td>4.5%</td>
<td>3.6%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Acute Kidney Injury Requiring Dialysis</td>
<td>1.1%</td>
<td>0.8%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Major Vascular Complications</td>
<td>9.6%</td>
<td>6.3%</td>
<td>7.0%</td>
</tr>
<tr>
<td>New PPI</td>
<td>27.7%</td>
<td>11.6%</td>
<td>14.6%</td>
</tr>
<tr>
<td>Moderate or Greater PVL</td>
<td>6.3%</td>
<td>2.1%</td>
<td>6.5%</td>
</tr>
</tbody>
</table>
Design considerations

• Statistical methods appropriate
• IPTW similar results
• Falsification endpoint analysis similar
• Despite this, possibility of residual confounding exists
Final thoughts

• Intriguing analysis

• Inherent differences between TAVR valves
 • May be incorrect to assume a class effect
 • Important to match patient to valve

• The field urgently needs head-to-head comparison trials
 • Device success (PVL), complications (pacemaker)
 • Hemodynamic performance (EOA, gradients)
 • Hard endpoints: long-term important as we expand the eligible patient pool
 • Cost
High risk or inoperable: 15%
Intermediate risk: 35%
Low risk: 50%

STS < 3%
FDA approval: August 16, 2019

STS 3-8%
FDA approval: August 18, 2016

STS => 8%
FDA approval: Nov 2, 2011/October 19, 2012