Telerehabilitation In The Home Versus Therapy In-Clinic For Patients With Stroke

*Professor, Depts. Neurology, Anatomy & Neurobiology, and PM&R

University of California, Irvine; USA
Dr. Cramer serves as a consultant for Abbvie, Constant Pharmaceutical, MicroTransponder, Neurolutions, Regenera, SanBio, Stemedica, and TRCare.
Motor deficits are a major contributor to post-stroke disability.

Animal studies with favorable plasticity use high rehab doses. (600 repetitions of pellet retrieval/day, Nudo 1996)

In humans, higher rehab therapy doses may improve outcomes.

Quantity of rehab therapy often low in humans, however:
 (1) financial constraints
 (2) patient can’t travel to a rehab therapy provider
 (3) shortage of rehabilitation care in some regions
 (4) poor patient compliance with assignments
 (5) limited dose during stroke rehabilitation
 (mean of 32 arm repetitions/session, Lang 2009)
Quality of rehab also important; greater plasticity when a task is
(1) challenging and varied
(2) accompanied by appropriate feedback
(3) motivating and goal-oriented
(4) interesting
(5) environmentally and ecologically relevant

We reasoned that telerehabilitation is ideally suited to efficiently provide a large dose of useful rehab therapy after stroke.
Telerehabilitation in the Home Versus Therapy In-Clinic for Patients With Stroke

124 subjects with stroke 4-36 weeks prior and arm motor deficits

Randomized at 11 US sites to intensive arm motor therapy
(a) traditional In-Clinic, versus
(b) in-home Telerehabilitation

Treatment
36 sessions (18 superv’d, 18 unsuperv’d), 70 min, over 6-8 wk
Intensity, duration, and frequency of therapy matched

Assessor-blind, randomized, non-inferiority design

clinicaltrials.gov NCT02360488
Primary outcome measure: change in arm motor Fugl-Meyer score from baseline to 30 days post-therapy
 Intent To Treat (all randomized subjects), multiple imputation for missing data

Secondary outcome measures:
 [1] Gains in stroke knowledge
 [2] Change in motivation over time

Analysis: If the non-inferiority margin (30% of ΔFM for In-Clinic group) falls outside the 95% CI for the difference in ΔFM between groups, then telerehabilitation would be considered non-inferior.

Sample size: Assumed In-Clinic group mean ΔFM of 6.85 points and SD=3.8, study needed 124 subjects for 85% power.
Key Inclusion criteria
1. Age ≥18 years
2. Stroke (ischemic or ICH) onset 4-36 weeks prior
3. Arm motor Fugl-Meyer score = 22-56 (out of 66)

Key Exclusion criteria
1. Major, active, coexistent neurological or psychiatric disease
2. Other diagnosis substantially affecting paretic arm
3. Severe depression (GDS Score >10)
4. Significant cognitive impairment (MoCA <22)
5. Communication deficits interfering with participation
6. Life expectancy <6 months
7. Non-English speaking
8. Unable to perform the 3 rehabilitation exercise test examples
9. Subject will not have a single address during the 6 weeks of therapy within 25 miles* of study site, with Verizon reception
Key Inclusion criteria
1. Age ≥18 years
2. Stroke (ischemic or ICH) onset 4-36 weeks prior
3. Arm motor Fugl-Meyer score = 22-56 (out of 66)

Key Exclusion criteria
1. Major, active, coexistent neurological or psychiatric disease
2. Other diagnosis substantially affecting paretic arm
3. Severe depression (GDS Score >10)
4. Significant cognitive impairment (MoCA <22)
5. Communication deficits interfering with participation
6. Life expectancy <6 months
7. Non-English speaking
8. Unable to perform the 3 rehabilitation exercise test examples
9. Subject will not have a single address during the 6 weeks of therapy within 25 miles* of study site, with Verizon reception
Details of study treatment

Treatment based on

[1] The Accelerated Skill Acquisition Program, which is “principle based, impairment focused, task specific, intense, engaging, collaborative, self-directed, and patient centered”

For both groups, all 70-minute sessions included:

[1] **Arm exercises** (88 available): at least 15 min/day

[2] **Functional training**: at least 15 min/day
 - In-Clinic used functional tasks
 - Telerehab used functional games

[3] **Stroke education**: 5 min/day, during unsupervised sessions
 - Focused on stroke prevention, risk factors, recognition, and treatment
In-Clinic Group

- **18 supervised treatment sessions** (70 minutes)
 - At the research center, with a therapist
- **18 unsupervised treatment sessions** (70 minutes)
 - In the home, using an individualized booklet
In-Clinic Group
• **18 supervised treatment sessions** (70 minutes)
 --At the research center, with a therapist
• **18 unsupervised treatment sessions** (70 minutes)
 --In the home, using an individualized booklet

Telerehabilitation
• Study team delivered a telerehabilitation system to the home
• **18 supervised treatment sessions** (70 minutes)
 --In the home, 30 min therapist videoconference at start
• **18 unsupervised treatment sessions** (70 minutes)
 --In the home, using telerehab system (no therapist contact)
In-Clinic Group

• **18 supervised treatment sessions** (70 minutes)
 -- At the research center, with a therapist

• **18 unsupervised treatment sessions** (70 minutes)
 -- In the home, using an individualized booklet

Telerehabilitation

• Study team delivered a telerehabilitation system to the home

• **18 supervised treatment sessions** (70 minutes)
 -- In the home, 30 min therapist videoconference at start

• **18 unsupervised treatment sessions** (70 minutes)
 -- In the home, using telerehab system (no therapist contact)

Games could be adjusted in relation to motor control, e.g., movement speed, timing, planning, range of motion, target size, cognitive demand, hemifield bias, bimanual, sustained, proximal vs. distal, and 1st person vs. 3rd person perspective
In-Clinic Group

- **18 supervised treatment sessions** (70 minutes)
 -- At the research center, with a therapist
- **18 unsupervised treatment sessions** (70 minutes)
 -- In the home, using an individualized booklet

Telerehabilitation

- Study team delivered a telerehabilitation system to the home
- **18 supervised treatment sessions** (70 minutes)
 -- In the home, 30 min therapist videoconference at start
- **18 unsupervised treatment sessions** (70 minutes)
 -- In the home, using telerehab system (no therapist contact)

Games could be adjusted in relation to motor control, e.g., movement speed, timing, planning, range of motion, target size, cognitive demand, hemifield bias, bimanual, sustained, proximal vs. distal, and 1st person vs. 3rd person perspective

Input device used to play games could also be adjusted
FDA: non-significant risk device study

clinicaltrials.gov NCT02360488
Telerehabilitation

<table>
<thead>
<tr>
<th>Diet</th>
<th>Stroke Facts</th>
<th>Stroke Risk Factors</th>
<th>Effects of Stroke</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1000</td>
<td>$1000</td>
<td>$1000</td>
<td>$1000</td>
<td>$1000</td>
</tr>
<tr>
<td>$3000</td>
<td>$3000</td>
<td>$3000</td>
<td>$3000</td>
<td>$3000</td>
</tr>
<tr>
<td>$4000</td>
<td>$4000</td>
<td>$4000</td>
<td>$4000</td>
<td>$4000</td>
</tr>
<tr>
<td>$5000</td>
<td>$5000</td>
<td>$5000</td>
<td>$5000</td>
<td>$5000</td>
</tr>
</tbody>
</table>

Transfer Object

Grasp and hold object with one hand. Transfer object to other hand. Reverse. Use objects of different shapes, sizes and weight.

In the past week of arm-related therapy you have been doing as part of this research study, how satisfied are you with the therapy?

I find the tasks/games:

<table>
<thead>
<tr>
<th>Very unsatisfactory</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Very satisfying</th>
</tr>
</thead>
</table>

Score: 5
Time: 125

Score: 0
Time: 127

Score: 8
Time: 21

Score: 0
Time: 106

Current total: 12. Press ↓ to hit or ↑ to stay

Score: 0
Time: 127

Slot Machine
Results

124 subjects randomized between 9/23/15 and 1/3/18

<table>
<thead>
<tr>
<th></th>
<th>Telerehab</th>
<th>In-Clinic</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>62</td>
<td>62</td>
<td>124</td>
</tr>
<tr>
<td>Age (years)</td>
<td>62 ± 14</td>
<td>60 ± 13</td>
<td>61 ± 13</td>
</tr>
<tr>
<td>Baseline arm motor Fugl-Meyer</td>
<td>42.8 ± 7.8</td>
<td>42.7 ± 8.7</td>
<td>42.8 ± 8.3</td>
</tr>
<tr>
<td>Time post-stroke (days)</td>
<td>132 ± 65</td>
<td>129 ± 59</td>
<td>131 ± 62</td>
</tr>
<tr>
<td>Stroke subtype n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic</td>
<td>54 (87.1)</td>
<td>52 (83.9)</td>
<td>106 (85.5)</td>
</tr>
<tr>
<td>Intracerebral hemorrhage</td>
<td>8 (12.9)</td>
<td>10 (16.1)</td>
<td>18 (14.5)</td>
</tr>
<tr>
<td>Gender (%F)</td>
<td>22.6%</td>
<td>32.3%</td>
<td>27.4%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>9.7%</td>
<td>6.5%</td>
<td>8.1%</td>
</tr>
<tr>
<td>Black</td>
<td>24.2%</td>
<td>29.0%</td>
<td>26.6%</td>
</tr>
<tr>
<td>White</td>
<td>66.1%</td>
<td>62.9%</td>
<td>64.5%</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>1.6%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Ethnicity (% Hispanic)</td>
<td>4.8%</td>
<td>0</td>
<td>2.4%</td>
</tr>
<tr>
<td>Geriatric Depression Scale</td>
<td>3.4 ± 3.1</td>
<td>3.6 ± 2.7</td>
<td>3.5 ± 2.9</td>
</tr>
<tr>
<td>Montreal Cognitive Assessment</td>
<td>24.9 ± 4.1</td>
<td>24.4 ± 5.0</td>
<td>24.7 ± 4.6</td>
</tr>
<tr>
<td>Paretic side (%R)</td>
<td>43.5%</td>
<td>58.1%</td>
<td>50.1%</td>
</tr>
<tr>
<td>Hypertension (% yes)</td>
<td>80.6%</td>
<td>85.5%</td>
<td>83.1%</td>
</tr>
<tr>
<td>Hypercholesterolemia (% yes)</td>
<td>64.5%</td>
<td>62.9%</td>
<td>63.7%</td>
</tr>
<tr>
<td>Diabetes mellitus (% yes)</td>
<td>22.6%</td>
<td>27.4%</td>
<td>25.0%</td>
</tr>
<tr>
<td>Atrial fibrillation (% yes)</td>
<td>16.1%</td>
<td>6.5%</td>
<td>11.3%</td>
</tr>
</tbody>
</table>
Results

124 subjects randomized between 9/23/15 and 1/3/18

<table>
<thead>
<tr>
<th></th>
<th>Telerehab</th>
<th>In-Clinic</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>62</td>
<td>62</td>
<td>124</td>
</tr>
<tr>
<td>Age (years)</td>
<td>62 ± 14</td>
<td>60 ± 13</td>
<td>61 ± 13</td>
</tr>
<tr>
<td>Baseline arm motor Fugl-Meyer</td>
<td>42.8 ± 7.8</td>
<td>42.7 ± 8.7</td>
<td>42.8 ± 8.3</td>
</tr>
<tr>
<td>Time post-stroke (days)</td>
<td>132 ± 65</td>
<td>129 ± 59</td>
<td>131 ± 62</td>
</tr>
<tr>
<td>Stroke subtype n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic</td>
<td>54 (87.1)</td>
<td>52 (83.9)</td>
<td>106 (85.5)</td>
</tr>
<tr>
<td>Intracerebral hemorrhage</td>
<td>8 (12.9)</td>
<td>10 (16.1)</td>
<td>18 (14.5)</td>
</tr>
<tr>
<td>Gender (%F)</td>
<td>22.6%</td>
<td>32.3%</td>
<td>27.4%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>9.7%</td>
<td>6.5%</td>
<td>8.1%</td>
</tr>
<tr>
<td>Black</td>
<td>24.2%</td>
<td>29.0%</td>
<td>26.6%</td>
</tr>
<tr>
<td>White</td>
<td>66.1%</td>
<td>62.9%</td>
<td>64.5%</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>1.6%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Ethnicity (% Hispanic)</td>
<td>4.8%</td>
<td>0</td>
<td>2.4%</td>
</tr>
<tr>
<td>Geriatric Depression Scale</td>
<td>3.4 ± 3.1</td>
<td>3.6 ± 2.7</td>
<td>3.5 ± 2.9</td>
</tr>
<tr>
<td>Montreal Cognitive Assessment</td>
<td>24.9 ± 4.1</td>
<td>24.4 ± 5.0</td>
<td>24.7 ± 4.6</td>
</tr>
<tr>
<td>Paretic side (%R)</td>
<td>43.5%</td>
<td>58.1%</td>
<td>50.1%</td>
</tr>
<tr>
<td>Hypertension (% yes)</td>
<td>80.6%</td>
<td>85.5%</td>
<td>83.1%</td>
</tr>
<tr>
<td>Hypercholesterolemia (% yes)</td>
<td>64.5%</td>
<td>62.9%</td>
<td>63.7%</td>
</tr>
<tr>
<td>Diabetes mellitus (% yes)</td>
<td>22.6%</td>
<td>27.4%</td>
<td>25.0%</td>
</tr>
<tr>
<td>Atrial fibrillation (% yes)</td>
<td>16.1%</td>
<td>6.5%</td>
<td>11.3%</td>
</tr>
</tbody>
</table>
Results

Dropout
10 subjects (8.1%) dropped out before the final visit:

<table>
<thead>
<tr>
<th></th>
<th>No Therapy</th>
<th>MD Withdrew</th>
<th>Lost to follow-up</th>
<th>Return to Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telerehab</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>In-Clinic</td>
<td>1</td>
<td>2 (HTN, Fx)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Compliance
Telerehab—58/62 (98.3 %) subjects compliant with 36 sessions
In-Clinic—57/62 (93.4 %) subjects compliant with 36 sessions

Adverse events

<table>
<thead>
<tr>
<th></th>
<th>SAE</th>
<th>Other adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telerehab</td>
<td>1 (all unrelated)</td>
<td>6 reasonably or definitely related</td>
</tr>
<tr>
<td>In-Clinic</td>
<td>6 (all unrelated)</td>
<td>5 reasonably or definitely related</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>In-Clinic</th>
<th>Telerehab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Fugl-Meyer</td>
<td>42.7 ± 8.7</td>
<td>42.8 ± 7.8</td>
</tr>
<tr>
<td>Fugl-Meyer change to d30</td>
<td>8.36 ± 7.0</td>
<td>7.86 ± 6.7</td>
</tr>
</tbody>
</table>
The non-inferiority margin is 2.47 (30% of In-Clinic group gains)

<table>
<thead>
<tr>
<th></th>
<th>In-Clinic</th>
<th>Telerehab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Fugl-Meyer</td>
<td>42.7 ± 8.7</td>
<td>42.8 ± 7.8</td>
</tr>
<tr>
<td>Fugl-Meyer change to d30</td>
<td>8.36 ± 7.0</td>
<td>7.86 ± 6.7</td>
</tr>
</tbody>
</table>
Results

The non-inferiority margin is 2.47 (30% of In-Clinic group gains)

The adjusted difference* between groups in ΔFM is 0.06 points:
Does the non-inferiority margin of 2.47 points fall outside of the 95% CI for this difference?

<table>
<thead>
<tr>
<th></th>
<th>In-Clinic</th>
<th>Telerehab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Fugl-Meyer</td>
<td>42.7 ± 8.7</td>
<td>42.8 ± 7.8</td>
</tr>
<tr>
<td>Fugl-Meyer change to d30</td>
<td>8.36 ± 7.0</td>
<td>7.86 ± 6.7</td>
</tr>
</tbody>
</table>

*Adjusted for age, baseline FM, time post-stroke, enrollment site, and stroke subtype
Results

The non-inferiority margin (2.47 points) fell outside of the 95% CI for 0.06 points (adjusted* group difference in ΔFM)

*Adjusted for age, baseline FM, time post-stroke, enrollment site, and stroke subtype
Results

The non-inferiority margin (2.47 points) fell outside of the 95% CI for 0.06 points (adjusted* group difference in ΔFM)

Telerehabilitation is non-inferior.

*Adjusted for age, baseline FM, time post-stroke, enrollment site, and stroke subtype
The non-inferiority margin (2.47 points) fell outside of the 95% CI for 0.06 points (adjusted* group difference in ΔFM)

Telerehabilitation is non-inferior.

FM arm motor gains did not differ among subjects with (n=39) vs. without (n=75) aphasia.
The non-inferiority margin (2.47 points) fell outside of the 95% CI for 0.06 points (adjusted* group difference in ΔFM).

Telerehabilitation is non-inferior.

FM arm motor gains did not differ among subjects with (n=39) vs. without (n=75) aphasia.

The number of TR arm movement repetitions averaged 1,031/day.
Results

The non-inferiority margin (2.47 points) fell outside of the 95% CI for 0.06 points (adjusted* group difference in ΔFM)

Telerehabilitation is non-inferior.

FM arm motor gains did not differ among subjects with (n=39) vs. without (n=75) aphasia.

The number of TR arm movement repetitions averaged 1,031/day.

Both groups showed significant stroke knowledge gains (10.9% Telerehab vs. 8.2% In-Clinic, p=0.20).
Results

The non-inferiority margin (2.47 points) fell outside of the 95% CI for 0.06 points (adjusted* group difference in ΔFM).

Telerehabilitation is non-inferior.

FM arm motor gains did not differ among subjects with (n=39) vs. without (n=75) aphasia.

The number of TR arm movement repetitions averaged 1,031/day.

Both groups showed significant stroke knowledge gains (10.9% Telerehab vs. 8.2% In-Clinic, p=0.20).

Gains in activity-inherent motivation to end of therapy were 0.47 points higher in IC > TR group (p=0.008) on 7 point PACES scale.
Arms improved, as Fugl-Meyer score gains (7.86-8.36 points) exceed minimal clinically important difference (4.25-7.25).
Arms improved, as Fugl-Meyer score gains (7.86-8.36 points) exceed minimal clinically important difference (4.25-7.25).

These arm motor gains were comparable for home-based telerehab as compared to in-clinic therapy.
Arms improved, as Fugl-Meyer score gains (7.86-8.36 points) exceed minimal clinically important difference (4.25-7.25).

These arm motor gains were comparable for home-based telerehab as compared to in-clinic therapy.

Telerehab was also comparably efficacious at patient education.
Arms improved, as Fugl-Meyer score gains (7.86-8.36 points) exceed minimal clinically important difference (4.25-7.25).

These arm motor gains were comparable for home-based telerehab as compared to in-clinic therapy.

Telerehab was also comparably efficacious at patient education.

Therapist-guided, home-based, effective telerehab might
 --be paired with a drug (experience-dependent plasticity)
 --facilitate detailed remote measurements
 --extend to other neurological domains (language, leg, etc.)
 --enable stroke smart home
Telerehabilitation In The Home Versus Therapy In-Clinic For Patients With Stroke

*Professor, Depts. Neurology, Anatomy & Neurobiology, and PM&R

University of California, Irvine; USA