BHF Glyceryl trinitrate for pre-hospital ultra-acute stroke: Main results from the Rapid Intervention with Glyceryl trinitrate in Hypertensive stroke Trial-2 (RIGHT-2)

Philip M Bath
Stroke Association Professor of Stroke Medicine
On behalf of RIGHT-2 Investigators
Declarations

RIGHT-2:
▲ Funded by British Heart Foundation

Philip Bath:
▲ Stroke Association Professor of Stroke Medicine
▲ NIHR Senior Investigator

Glyceryl trinitrate (GTN, nitroglycerin):
▲ Not licensed for acute stroke
Thanks

Trial Steering Committee
Independent experts:
- Graham Venables (TSC Chair/Neurologist; Sheffield), Pierre Amarenco (Neurologist; Paris, France), Keith Muir (Neurologist; Glasgow)

Grant holders:
- Philip Bath (Chief Investigator/Stroke Physician; Nottingham), Tim England (Stroke Physician; Derby), Nikola Sprigg (Stroke Physician; Nottingham), Alan Montgomery (Statistician; Nottingham), Stuart Pocock (Statistician; London), John Potter (Stroke Physician; Norwich), Chris Price (Stroke Physician; Newcastle), Tom Robinson (Stroke Physician; Leicester), Christine Roffe (Stroke Physician; Stoke-on-Trent), Niro Siriwardena (Pre-Hospital Healthcare; Lincoln), Joanna Wardlaw (Neuroradiologist; Edinburgh)

Funder's representative: Shannon Amoils (London)
Patient representative: Malcolm Jarvis (Nottingham)
Sponsor's representative: Angela Shone (Nottingham)

Advisory Committee
- Craig Anderson (Sydney, Australia), Eivind Berge (Oslo, Norway), Peter Rothwell (Oxford, UK), Steve Phillips (Halifax, Canada), Else Sandset (Oslo, Norway), Nerses Sanossian (Los Angeles, USA), Jeff Saver (Los Angeles, USA)

Independent Data Monitoring Committee
- Peter Sandercock (Chair; Edinburgh, UK): Kjell Asplund (Umeå, Sweden), Colin Baigent (Oxford, UK)

Independent events (SAE) adjudicators
- Marc Randall, Sandeep Ankolekar

Neuroimaging adjudicators
- Joanna Wardlaw (Chair; Edinburgh, UK), Lesley Cala (Perth, Australia), Grant Mair (Edinburgh, UK)

Ambulance Services
- Paramedics

Hospitals
- Coordinators

And the Patients and Relatives
Prehospital transdermal glyceryl trinitrate in patients with ultra-acute presumed stroke (RIGHT-2): an ambulance-based, randomised, sham-controlled, blinded, phase 3 trial

The RIGHT-2 Investigators*

Summary
Background High blood pressure is common in acute stroke and is a predictor of poor outcome; however, large trials of lowering blood pressure have given variable results, and the management of high blood pressure in ultra-acute stroke remains unclear. We investigated whether transdermal glyceryl trinitrate (GTN; also known as nitroglycerin), a nitric oxide donor, might improve outcome when administered very early after stroke onset.

Methods We did a multicentre, paramedic-delivered, ambulance-based, prospective, randomised, sham-controlled, blinded-endpoint, phase 3 trial in adults with presumed stroke within 4 h of onset, face-arm-speech-time score of 2 or 3, and systolic blood pressure 120 mm Hg or higher. Participants were randomly assigned (1:1) to receive transdermal GTN (5 mg once daily for 4 days; the GTN group) or a similar sham dressing (the sham group) in UK-based ambulances by paramedics, with treatment continued in hospital. Paramedics were unmasked to treatment, whereas participants were masked. The primary outcome was the 7-level modified Rankin Scale (mRS; a measure of functional outcome) at 90 days, assessed by central telephone follow-up with masking to treatment. Analysis was hierarchical, first in participants with a confirmed stroke or transient ischaemic attack (cohort 1), and then in all participants who were randomly assigned (intention-to-treat, cohort 2) according to the statistical analysis plan. This trial is registered with ISRCTN, number ISRCTN26986053.
Background

1. Nitric oxide is a fundamental regulatory molecule
 a) Vasodilator, anti-leukocyte, anti-platelet, neurotransmitter, ...
2. Nitric oxide (nitrite/nitrate) level low in acute stroke
3. Glyceryl trinitrate (GTN, a NO donor) safe in acute stroke
 a) ENOS (n=4011) neutral
4. GTN improves outcome in ultra-acute/hyper-acute stroke
 a) RIGHT pilot trial, ENOS-early subgroup
 b) Time-dependent: very early best
 c) Effective in both IS and ICH
5. NO donors are neuroprotective in experimental ischaemic stroke
 a) Time-dependent

Willmot et al. Hypertension 2006; 47:1209-15
Bath et al, BASC. Stroke Res Treat 2016; ID9706720
Time is brain

Only effective interventions have time-dependency:[1]

- Alteplase [2]
- Thrombectomy [3]

Large Ambulance trials feasible, at least in US
- FAST-Mag [5]

Efficacy by time for:
- Alteplase: for mRS 0-1 [34] aOR 1.75 (1.35-2.27)
- Thrombectomy: for mRS 0-2 [35] ARR 25.9% (8.3-44.4)
- GTN: for ordinal mRS acOR 1.92 (1.28-2.94)

Modified Rankin Scale

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>18.4</td>
<td>16.2</td>
<td>18.3</td>
<td>13.3</td>
<td>10.6</td>
<td>10.2</td>
<td>13.0</td>
</tr>
<tr>
<td>Magnesium</td>
<td>18.7</td>
<td>16.3</td>
<td>18.4</td>
<td>13.3</td>
<td>10.5</td>
<td>10.1</td>
<td>12.7</td>
</tr>
</tbody>
</table>

3. Fransen et al. JAMA Neurology 2015; 21 December
5. Saver et al. NEJM 2015;372:528-36

N=6,756
N=500
N=500
N=312
N=1,700
RIGHT-2: Design

- Multicentre, parallel-group, prospective, randomised, single-blind, blinded-endpoint controlled trial

- Main phase: May 2015 – April 2018
- 850 patients from 5+ ambulance services and 30+ associated acute hospital stroke centres
- Primary outcome/analysis at day 90: modified Rankin scale

Diagram:

- Day 0
 - GTN
 - No GTN
- Day 4
- Day 90

References:

Appleton et al. *Int J Stroke* 2017 1 August

Protocol
Patients: Inclusion/exclusions

Inclusion

- Patients presenting to paramedics in context of 999 ambulance call for ‘stroke’
- Ages 18 years or more
- ‘Face/Arm/Speech’ Time (FAST) score ≥2
- Time ≤4 hours of onset
- Systolic BP ≥120 mmHg
- Paramedic:
 - Trained in RIGHT-2 procedures
 - Will take patient to a participating hospital
- Written or witnessed oral consent, or relative/paramedic proxy assent

Exclusion

- Patient at a Nursing Home
- Capillary glucose <2.5 mmol/l
- Glasgow Coma Scale <8
- Witnessed seizure/fit at presentation
- Known life expectancy <6 months
- Known to have taken a PDE5 inhibitor, e.g. sildenafil, in previous day before stroke
- Known sensitivity to Transiderm Nitro patch
- Known sensitivity to Duoderm hydrocolloid dressing

(Appleton et al. Int J Stroke 2017 1 August)
Intervention & comparator

Active patch:
- Transdermal GTN 5 mg daily
- Transderm Nitro ‘5’ (Novartis)
- Unlabelled patch in labelled sachet

Sham dressing
- Hydrocolloid dressing - 4.4 cm x 3.8 cm
- Duoderm
- Unlabelled patch in labelled sachet

4 patches (GTN/Sham) packed in a ‘first-aid’ box by Nottingham University Hospitals NHS Trust Pharmacy

Appleton et al. *Int J Stroke* 2017 1 August
Key protocol changes

Original protocol
▲ Analyse all population [1] (as in RIGHT [2])
▲ Comparison of GTN vs sham

Observation
▲ Higher than expected mimic rate (26% v 12%) so risk of dilution of treatment effect

Changed protocol (blinded to treatment assignment)
1. Increase sample size 850 → 1050 (with additional funding)
2. Change to hierarchical analysis to prevent dilution [3]
 a) Explanatory analysis in target population (stroke + TIA). If positive
 b) Pragmatic analysis in whole population (ITT)

1. Appleton *et al*. *Int J Stroke* 2017 1 August
CONSORT: in All (ITT)

Randomised 1149
 GTN 568
 Sham 581

Adherence
 First patch >99%
 First 2 patches 57%

Follow-up day 90
 mRS 1102 (96%)
 Vital status 1122 (98%)
 Died 203
 Missing 0
 Lost to follow-up 21
 Withdraw 25
 Refused 1

RIGHT-2 Investigators. *Lancet* 2019; *in press*
Baseline, ambulance: in All (ITT)

Balanced

<table>
<thead>
<tr>
<th></th>
<th>GTN</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, pre-randomisation</td>
<td>568</td>
<td>581</td>
</tr>
<tr>
<td>Age (years)</td>
<td>72 (15)</td>
<td>73 (15)</td>
</tr>
<tr>
<td>Sex, male (%)</td>
<td>294 (52)</td>
<td>300 (52)</td>
</tr>
<tr>
<td>OTR (mins)</td>
<td>70 [45-115]</td>
<td>72 [45-118]</td>
</tr>
<tr>
<td>ECG, AF/flutter (%)</td>
<td>92 (21)</td>
<td>95 (20)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>162 (25)</td>
<td>163 (26)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>92 (19)</td>
<td>92 (17)</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>82 (18)</td>
<td>83 (19)</td>
</tr>
<tr>
<td>GCS <14 (%)</td>
<td>162 (29)</td>
<td>140 (24)</td>
</tr>
<tr>
<td>FAST =3 (%)</td>
<td>343 (60)</td>
<td>347 (60)</td>
</tr>
<tr>
<td>Ethnic, non-white (%)</td>
<td>50 (9)</td>
<td>63 (11)</td>
</tr>
<tr>
<td>Pre-morbid mRS >2 (%)</td>
<td>115 (20)</td>
<td>108 (19)</td>
</tr>
<tr>
<td>Previous stroke (%)</td>
<td>137 (25)</td>
<td>135 (24)</td>
</tr>
<tr>
<td>Ischaemic stroke (%)</td>
<td>302 (53)</td>
<td>295 (51)</td>
</tr>
<tr>
<td>Intracerebral haemorrhage (%)</td>
<td>74 (13)</td>
<td>71 (12)</td>
</tr>
<tr>
<td>TIA (%)</td>
<td>57 (10)</td>
<td>52 (9)</td>
</tr>
<tr>
<td>Mimic (%)</td>
<td>134 (24)</td>
<td>163 (28)</td>
</tr>
</tbody>
</table>

Of stroke (n=743)

- IS 80%
- ICH 20%

RIGHT-2 Investigators. *Lancet* 2019; *in press*
SBP/DBP (mmHg): in Stroke/TIA

RIGHT-2 Investigators. Lancet 2019; in press
Primary outcome: in Stroke/TIA

Poor outcome acOR 1.25 (0.97, 1.60), p=0.083

> Trial neutral in target population

RIGHT-2 Investigators. *Lancet* 2019; *in press* N=828
mRS by subgroups: in Stroke/TIA

One interaction:
▲ Time: GTN worse when given very early

No interactions:
▲ Age
▲ Sex
▲ Pre-morbid mRS
▲ HT
▲ Previous stroke
▲ Previous nitrate
▲ GCS
▲ FAST
▲ SBP
▲ AF
▲ Diagnosis

RIGHT-2 Investigators. *Lancet* 2019; *in press*
Death: in Stroke/TIA

GTN Sham
23% 19% aHR 1.24 (0.91, 1.68), p=0.17

> No difference in death

RIGHT-2 Investigators. Lancet 2019; in press
Primary outcome (mRS): in All (ITT)

Explanatory analysis not positive so hierarchical pragmatic analysis not necessary, but N=1102

GTN

Sham

Poor outcome acOR 1.04 (0.84, 1.29), p=0.69

> Neutral trial in intention-to-treat population

RIGHT-2 Investigators. Lancet 2019; in press
Strengths

- Large pre-hospital trial
- Very early treatment [71 mins]
- Blinded outcomes
- Blinded adjudication
- Good compliance to first treatment
- Hierarchical analysis novel – potentially useful for future trials

Limitations

- Single-blind trial
- UK-only trial
- Change to protocol
- Smaller than expected BP difference
- Lower than expected adherence on days 2-4
- Higher than expected mimic rate
Summary

UK multicentre ambulance-based paramedic-led trial:
 ▲ Feasible (supports FAST-MAG)

GTN:
In stroke/TIA (target)
 ▲ mRS: Neutral

In All (ITT)
 ▲ mRS: Neutral
 ▲ Mimics: Safe
 ▲ SAEs: Neutral

RIGHT-2 vs ENOS-early
 ▲ Neutral vs positive
 ▲ OTR: 71 mins vs 264 mins

GTN
 ▲ No indication for use by paramedics pre-hospital

RIGHT-2 Investigators. Lancet 2019; in press
Thank you for listening

And many thanks to patients, investigators and our families