Angiotensin Receptor-Neprilysin Inhibition in Patients Hospitalized With Acute Decompensated Heart Failure

Eric J Velazquez,1 David A Morrow,2 Adam D DeVore,3 Carol I Duffy,4 Andrew P Ambrosy,3 Kevin McCague,4 Ricardo Rocha,4 Eugene Braunwald2

1Yale Univ Sch of Med, New Haven, CT; 2Harvard Univ/Brigham and Women's Hosp, Boston, MA; 3Duke Univ/Duke Clinical Res Inst, Durham, NC; 4Novartis Pharmaceuticals Corp, East Hanover, NJ; 5
Background

- Acute decompensated heart failure (ADHF) accounts for over 1M hospitalizations in the US annually.
- Guideline-directed therapy for ADHF is limited.
 - Decongestion with diuretics and hemodynamic support with vasodilators remain the standards of care.
Rationale

- PARADIGM-HF trial in chronic HFrEF: sacubitril/valsartan ➔ CV death or HF hospitalization compared to enalapril
 - Patients with ADHF requiring IV therapy were excluded
 - Stable HF therapy with adequate doses for >4 weeks
 - Required sequential run-in with high dose enalapril and sacubitril/valsartan before randomization

- It is unknown if in-hospital initiation of sacubitril/valsartan compared to enalapril is safe and effective in ADHF

Study Design

Hospitalized with ADHF (HFrEF) → Stabilized → sacubitril/valsartan vs enalapril

In-hospital initiation

- Titration algorithm over 8 weeks
- Evaluate biomarker surrogates of efficacy
- Evaluate safety and tolerability
- Explore clinical outcomes
Key Entry Criteria

- Hospitalized for ADHF (signs and symptoms of fluid overload)
- LVEF ≤40% within the last 6 months
- NT-proBNP ≥1600 pg/mL or BNP ≥400 pg/mL (screening)
- Stabilized while still hospitalized
 - In the prior 6 hours:
 - SBP ≥100 mmHg, no symptomatic hypotension
 - No increase in IV diuretics
 - No IV vasodilators
 - In the prior 24 hours: no IV inotropes
Key Endpoints

- **Primary endpoint:** Proportional change in NT-proBNP from baseline to the mean of weeks 4 and 8

- **Safety**
 - Worsening renal function
 - Hyperkalemia
 - Symptomatic hypotension
 - Angioedema

- **Exploratory Clinical Outcomes**
 - Serious clinical composite: death, re-hospitalization for HF, LVAD, or listing for cardiac transplant
 - Expanded composite: Serious composite + addition of HF med, unplanned outpatient IV diuretics or >50% increase in dose
SBP Dose Titration Algorithm

- Starting dose level based on SBP
 - If 100 to <120 mm Hg, sacubitril/valsartan 24/26 mg or enalapril 2.5 mg twice daily
 - If ≥120 mm Hg, sacubitril/valsartan 49/51 mg or enalapril 5 mg twice daily
- Up-titration based on SBP (clinical judgement permitted)
- Target doses
 - sacubitril/valsartan 97/103 mg twice daily or enalapril 10 mg twice daily
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>sacubitril/valsartan (n=440)</th>
<th>enalapril (n=441)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>61 (51, 71)</td>
<td>63 (54, 72)</td>
</tr>
<tr>
<td>Women (%)</td>
<td>25.7</td>
<td>30.2</td>
</tr>
<tr>
<td>Black (%)</td>
<td>35.9</td>
<td>35.8</td>
</tr>
<tr>
<td>No prior HF diagnosis (%)</td>
<td>32.3</td>
<td>37.0</td>
</tr>
<tr>
<td>No ACEi/ARB therapy (%)</td>
<td>52.7</td>
<td>51.5</td>
</tr>
<tr>
<td>LVEF (*)</td>
<td>0.24 (0.18, 0.30)</td>
<td>0.25 (0.20, 0.30)</td>
</tr>
<tr>
<td>SBP (mm Hg) (*)</td>
<td>118 (110, 133)</td>
<td>118 (109, 132)</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL) (*)</td>
<td>2883 (1610, 5403)</td>
<td>2536 (1363, 4917)</td>
</tr>
</tbody>
</table>

Median (interquartile range).
Primary Endpoint: % Change in NT-proBNP

29% greater reduction with sacubitril/valsartan
CI 19%, 37%; P < 0.0001
Safety

<table>
<thead>
<tr>
<th>Safety Events (%)</th>
<th>sacubitril/ valsartan (n=440)</th>
<th>enalapril (n=441)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worsening renal function*</td>
<td>13.6</td>
<td>14.7</td>
<td>0.93 (0.67-1.28)</td>
</tr>
<tr>
<td>Hyperkalemia†</td>
<td>11.6</td>
<td>9.3</td>
<td>1.25 (0.84-1.84)</td>
</tr>
<tr>
<td>Symptomatic hypotension</td>
<td>15.0</td>
<td>12.7</td>
<td>1.18 (0.85-1.64)</td>
</tr>
<tr>
<td>Angioedema event</td>
<td>1 (0.2%)</td>
<td>6 (1.4%)</td>
<td>0.17 (0.02-1.38)</td>
</tr>
</tbody>
</table>

*Cr ≥0.5 with simultaneous reduction in eGFR of ≥25%
†K+ >5.5 mg/dl

P = NS for all safety events
Serious Composite Clinical Endpoint

Death, HF re-hosp, LVAD, Transplant listing

HR = 0.54; 95% CI 0.37, 0.79
P = 0.001
NNT = 13

Sacubitril/valsartan
N = 440

Enalapril
N = 441

Event Rate (%) vs Days since Randomization

0 7 14 21 28 35 42 49 56

0 10 20
Exploratory Clinical Endpoints

<table>
<thead>
<tr>
<th></th>
<th>sacubitril/valsartan (n=440)</th>
<th>enalapril (n=441)</th>
<th>HR</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious Composite, %</td>
<td>9.3</td>
<td>16.8</td>
<td>0.54</td>
<td>0.001</td>
</tr>
<tr>
<td>Death, %</td>
<td>2.3</td>
<td>3.4</td>
<td>0.66</td>
<td>0.311</td>
</tr>
<tr>
<td>Re-hosp for HF, %</td>
<td>8.0</td>
<td>13.8</td>
<td>0.56</td>
<td>0.005</td>
</tr>
<tr>
<td>LVAD, %</td>
<td>0.2</td>
<td>0.2</td>
<td>0.99</td>
<td>0.999</td>
</tr>
<tr>
<td>Cardiac Transplant, %</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Expanded Composite*, %</td>
<td>56.6</td>
<td>59.9</td>
<td>0.93</td>
<td>0.369</td>
</tr>
<tr>
<td>Unplanned IV diuretics, %</td>
<td>0.5</td>
<td>0.5</td>
<td>0.99</td>
<td>0.997</td>
</tr>
<tr>
<td>Addition of HF med, %</td>
<td>17.7</td>
<td>19.1</td>
<td>0.92</td>
<td>0.58</td>
</tr>
<tr>
<td>>50% diuretic increase, %</td>
<td>49.6</td>
<td>50.3</td>
<td>0.98</td>
<td>0.812</td>
</tr>
</tbody>
</table>

*Serious composite + addition of HF med, no unplanned outpatient IV diuretics or >50% increase in dose
Key Subgroup Analyses

Change in NT-proBNP

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>sacubitril/valsartan vs. enalapril mean [95% CI]</th>
<th>Subgroup</th>
<th>Hazard Ratio [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients</td>
<td>0.71 [0.63, 0.81]</td>
<td>All Patients</td>
<td>0.54 [0.37, 0.79]</td>
</tr>
<tr>
<td>Prior HF</td>
<td></td>
<td>Prior HF</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.65 [0.53, 0.81]</td>
<td>No</td>
<td>0.37 [0.12, 1.15]</td>
</tr>
<tr>
<td>Yes</td>
<td>0.72 [0.63, 0.83]</td>
<td>Yes</td>
<td>0.53 [0.35, 0.80]</td>
</tr>
<tr>
<td>Prior ACEi/ARB</td>
<td></td>
<td>Prior ACEi/ARB</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.72 [0.60, 0.86]</td>
<td>No</td>
<td>0.52 [0.29, 0.95]</td>
</tr>
<tr>
<td>Yes</td>
<td>0.72 [0.61, 0.85]</td>
<td>Yes</td>
<td>0.56 [0.34, 0.92]</td>
</tr>
</tbody>
</table>

Favors sacubitril / valsartan
Favors enalapril

Serious Composite Endpoint

P value (interaction) = NS
Conclusions

Among hemodynamically stabilized acute heart failure patients with reduced EF, compared with enalapril, sacubitril/valsartan administered over 8 weeks …

- Led to greater reduction in NT-proBNP
- Reduced re-hospitalization for heart failure
- Was well tolerated with comparable rates of worsening renal function, hyperkalemia, symptomatic hypotension, and angioedema
These results support the in-hospital initiation of sacubitril/valsartan in stabilized patients with acute decompensated heart failure and reduced EF, irrespective of prior ACEi/ARB use, or prior HF diagnosis.
Angiotensin–Neprilysin Inhibition in Acute Decompensated Heart Failure

Eric J. Velazquez, M.D., David A. Morrow, M.D., M.P.H.,
Adam D. DeVore, M.D., M.H.S., Carol I. Duffy, D.O., Andrew P. Ambrosy, M.D.,
Kevin McCague, M.A., Ricardo Rocha, M.D., and Eugene Braunwald, M.D., for
the PIONEER-HF Investigators*