Survival after IV/IO Amiodarone, Lidocaine or Placebo in Out-of-Hospital VF Cardiac Arrest

Resuscitation Outcomes Consortium Investigators

![Map of participating cities](image)

a pre-specified analysis of

... a prospective, randomized, multicenter trial comparing effects of amiodarone and lidocaine vs placebo on survival in shock-refractory OHCA

when given IV vs IO

Mohamud Daya, MD, MS
Brian Leroux, PhD
Thomas Rea, MD, MPH
Paul Dorian, MD, MSc
Joshua Lupton, MD
Laurie J. Morrison, MD, MSc
James A. Menegazzi, MD
Gary M. Vilke, MD
Tom P. Aufderheide, MD, MS
James Christenson, MD
Craig D. Newgard, MD
Ahamed H. Idris, MD
David Barbic, MD, MSc
Carol Herdeman
Paul Dorian, MD, MSc
Peter J. Kudenchuk, MD

The Resuscitation Outcomes Consortium Investigators
Background
Out-of-Hospital Cardiac Arrest

• 400,000 out-of-hospital cardiac arrests/yr
• >100,000 caused by shockable rhythms (VF/VT)
• Most VF/VT episodes “shock-refractory” → drug therapy
• Optimal route drug administration in cardiac arrest?

Background
IO vs IV Vascular Access

Part 7.2: Management of Cardiac Arrest

“If access has not been established, the provider should insert a large peripheral venous catheter…”

AHA Circulation 2005;112:IV-58.

- Peripheral IV insertion heavily patient/operator dependent\(^1\)
- Variable success (18-98%)
- May require multiple attempts (30-50%)

Background
IO vs IV Vascular Access

Part 7.2: Management of Cardiac Arrest

“Intraosseous (IO) cannulation provides access to a non-collapsible venous plexus, enabling drug delivery … and is attainable in all age groups. Providers may establish IO access if IV access is unavailable (Class IIa).”

• Success of tibial IO (91%) exceeds peripheral IV (32%)¹
• IO access achieved faster than IV (1.5 min vs 3.6 min)²

Growing use of IO for primary access by EMS

Background

IO vs IV Clinical Effectiveness

“…route of vascular access may have differential physiological & clinical effects.”

“…IO access associated with lower survival & poor neurological recovery.”

Main Aim

Determine the effectiveness of amiodarone, lidocaine or placebo . . . given IV vs IO . . .

. . . on survival to hospital discharge after out-of-hospital cardiac arrest caused by shock-refractory VF/VT
Hypothesis

- A priori hypothesis
 - Effects of amiodarone and lidocaine attenuated by route of administration
 - Survival benefit from antiarrhythmic drugs most evident when given IV, not IO
Methods

Pre-specified analysis of RCT (ALPS) under EFIC

Patients

• Adults, non-traumatic out-of-hospital cardiac arrest
• Shock-refractory VF/VT after ≥ 1 shock(s)
• Known type of vascular access

Exclusion

• Protected populations (including opt-out)
• Amiodarone or lidocaine allergy
• Open label IV amiodarone or lidocaine
Study Outcomes

- **Primary - survival to hospital discharge**
- **Secondary**
 - Admission alive to hospital
 - Survival with favorable neurological status at discharge (modified Rankin scale ≤ 3)
- **Outcomes adjusted for …**
 - Age, gender, arrest location, witnessed status, bystander CPR, study site, **time** to … arrival ALS … receipt of study drug
Results

Patient Screening, Stratification & Randomization

<table>
<thead>
<tr>
<th>Reason for Exclusion</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>No shock-refractory VF/VT</td>
<td>30,487</td>
</tr>
<tr>
<td>Initial rhythm not VF/VT</td>
<td>1,063</td>
</tr>
<tr>
<td>VF/VT terminated by 1 shock</td>
<td>1,318</td>
</tr>
<tr>
<td>Lost eligibility</td>
<td>270</td>
</tr>
<tr>
<td>Forgot study protocol</td>
<td>602</td>
</tr>
<tr>
<td>Study drug not given</td>
<td>257</td>
</tr>
<tr>
<td>Circumstantial issues</td>
<td>425</td>
</tr>
<tr>
<td>No vascular access</td>
<td>187</td>
</tr>
<tr>
<td>Prior IV amiodarone/lidocaine</td>
<td>75</td>
</tr>
<tr>
<td>Protected population</td>
<td>46</td>
</tr>
<tr>
<td>Advance directive</td>
<td>19</td>
</tr>
<tr>
<td>No advanced life support</td>
<td>19</td>
</tr>
<tr>
<td>Other ineligible</td>
<td>51</td>
</tr>
<tr>
<td>Other</td>
<td>44</td>
</tr>
</tbody>
</table>

Analysis Population

- **Total**: 3,026
- **Vascular access + study drug-eligible**: 3,026

Drug Routes

- **IV Drug Route**: 2,358 (78%)
 - 1,989 (84%) arm
 - 77 (3%) central
 - 10 (0.5%) leg
 - 190 (8%) unknown

- **IO Drug Route**: 661 (22%)
 - 614 (93%) tibial
 - 11 (2%) humeral
 - 36 (5%) unknown

Drug Administration

- **Amiodarone**
 - Total: 974 (32%)
 - IV: 762 (78%)
 - IO: 212 (33%)

- **Lidocaine**
 - Total: 993 (33%)
 - IV: 771 (33%)
 - IO: 220 (33%)

- **Placebo**
 - Total: 1,059 (35%)
 - IV: 825 (35%)
 - IO: 229 (35%)
IV vs IO Drug Administration by Study Site

At half of study sites ≥75% of established access was IV

Half of study sites contributed 89% of patients with IO access
Pre-randomization Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>IV Route (n=2358)</th>
<th>IO Route (n=661)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD) years</td>
<td>62.7 (14.3)</td>
<td>62.3 (14.4)</td>
<td>-</td>
</tr>
<tr>
<td>Male, %</td>
<td>82.1%</td>
<td>72.8%</td>
<td><0.001</td>
</tr>
<tr>
<td>Public location, %</td>
<td>31.4%</td>
<td>28.4%</td>
<td>-</td>
</tr>
<tr>
<td>Bystander witnessed, %</td>
<td>65.2%</td>
<td>62.4%</td>
<td>-</td>
</tr>
<tr>
<td>Bystander CPR, %</td>
<td>56.8%</td>
<td>58.1%</td>
<td>-</td>
</tr>
</tbody>
</table>
Resuscitation Characteristics

<table>
<thead>
<tr>
<th></th>
<th>IV Route (n=2358)</th>
<th>IO Route (n=661)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression rate/min, mean (SD)</td>
<td>110 (10.9)</td>
<td>110 (11.3)</td>
<td>-</td>
</tr>
<tr>
<td>Compression depth mm, mean (SD)</td>
<td>51.7 (10.3)</td>
<td>49.7 (9)</td>
<td><0.001</td>
</tr>
<tr>
<td>CPR fraction %, mean (SD)</td>
<td>83% (10)</td>
<td>85% (9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Preshock pause secs, mean (SD)</td>
<td>10.3 (9.6)</td>
<td>9.8 (9.3)</td>
<td>-</td>
</tr>
<tr>
<td>Post-shock pause secs, mean (SD)</td>
<td>6.23 (32.4)</td>
<td>6.7 (37)</td>
<td>-</td>
</tr>
</tbody>
</table>
Treatment Times

<table>
<thead>
<tr>
<th></th>
<th>IV Route (n=2358)</th>
<th>IO Route (n=661)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>911 Call to EMS arrival, min mean (SD)</td>
<td>5.8 (2.60)</td>
<td>5.4 (2.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>911 to ALS arrival, min mean (SD)</td>
<td>8.3 (4.7)</td>
<td>6.8 (4.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>911 to IV/IO* min, mean (SD)</td>
<td>14.2 (5.6)</td>
<td>13.9 (5.8)</td>
<td>-</td>
</tr>
<tr>
<td>911 to Study Drug* min, mean (SD)</td>
<td>19.3 (7)</td>
<td>19.4 (7.3)</td>
<td>-</td>
</tr>
</tbody>
</table>

*non-EMS witnessed cardiac arrests
Admission Alive to Hospital
IV vs IO Drug Administration (n=3,019)

Adjusted Absolute Difference (95% CI)*

<table>
<thead>
<tr>
<th>Drug Combination</th>
<th>IV (unadjusted %’s)</th>
<th>IO (unadjusted %’s)</th>
<th>p for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone vs Placebo</td>
<td>48.6%</td>
<td>39.8%</td>
<td>9.1% (4.3, 13.8)</td>
</tr>
<tr>
<td>Lidocaine vs Placebo</td>
<td>48.2%</td>
<td>39.8%</td>
<td>9.4% (4.6, 14.2)</td>
</tr>
<tr>
<td>Amiodarone vs Placebo</td>
<td>35.4%</td>
<td>38.9%</td>
<td>-1.8% (-10.7, 7.1)</td>
</tr>
<tr>
<td>Lidocaine vs Placebo</td>
<td>43.2%</td>
<td>38.9%</td>
<td>7.4% (-1.5, 16.4)</td>
</tr>
</tbody>
</table>

*adjusted analysis confined to 2,860 patients with all known covariates
<table>
<thead>
<tr>
<th>Adverse Event within 24 hours</th>
<th>IV Route (n=2358)</th>
<th>IO Route (n=661)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO complication, %</td>
<td>-</td>
<td>0.6%</td>
<td></td>
</tr>
<tr>
<td>Thrombophlebitis, %</td>
<td>0.3%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cardiac pacing, %</td>
<td>3.6%</td>
<td>3.8%</td>
<td>-</td>
</tr>
<tr>
<td>Seizure, %</td>
<td>4.2%</td>
<td>3.2%</td>
<td>-</td>
</tr>
<tr>
<td>Anaphylaxis, %</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Any Adverse Event, %</td>
<td>7.8%</td>
<td>7.6%</td>
<td>-</td>
</tr>
<tr>
<td>Drug Comparison</td>
<td>IV (unadjusted %'s)</td>
<td>IO (unadjusted %'s)</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Amiodarone vs Placebo</td>
<td>25.9% 20.6%</td>
<td>19.3% 22.5%</td>
<td></td>
</tr>
<tr>
<td>Lidocaine vs Placebo</td>
<td>24.6% 20.6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted Absolute Difference (95% CI)*

- **IV**
 - Amiodarone vs Placebo: 5.5% (1.5, 9.5)
 - Lidocaine vs Placebo: 4.7% (0.7, 8.8)

- **IO**
 - Amiodarone vs Placebo: -1.8% (-9.2, 5.6)
 - Lidocaine vs Placebo: 0.3% (-7.4, 7.9)

*p for interaction = 0.23

*adjusted analysis confined to 2,860 patients with all known covariates
Favorable Functional Survival at Discharge (mRS ≤ 3) IV vs IO Drug Administration (n=3,019)

Adjusted Absolute Difference (95% CI)*

IV (unadjusted %’s)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Favorable Survival (%)</th>
<th>p for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone vs Placebo</td>
<td>20.1%</td>
<td>4.3% (0.6, 8)</td>
</tr>
<tr>
<td>Lidocaine vs Placebo</td>
<td>18.6%</td>
<td>2.9% (0.8, 6.6)</td>
</tr>
</tbody>
</table>

IO (unadjusted %’s)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Favorable Survival (%)</th>
<th>p for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone vs Placebo</td>
<td>14.2%</td>
<td>-1.5% (-8.1, 5.2)</td>
</tr>
<tr>
<td>Lidocaine vs Placebo</td>
<td>13.8%</td>
<td>-0.8% (-7.5, 5.8)</td>
</tr>
</tbody>
</table>

*p for interaction = 0.32

*adjusted analysis confined to 2,860 patients with all known covariates
Summary of Outcome Measures
IV Drug Administration (n=2,358)

Adjusted Absolute Difference (95% CI)*

IV Drugs (unadjusted %’s)

Admission Alive to Hospital

- **Amiodarone vs Placebo**
 - 48.6% vs 39.8%
 - 9.1% (4.3, 13.8)

- **Lidocaine vs Placebo**
 - 48.2% vs 39.8%
 - 9.4% (4.6, 14.2)

Discharged Alive

- **Amiodarone vs Placebo**
 - 25.9% vs 20.6%
 - 5.5% (1.5, 9.5)

- **Lidocaine vs Placebo**
 - 24.6% vs 20.6%
 - 4.7% (0.7, 8.8)

mRS ≤ 3 at Discharge

- **Amiodarone vs Placebo**
 - 20.1% vs 16.6%
 - 4.3% (0.6, 8)

- **Lidocaine vs Placebo**
 - 18.6% vs 16.6%
 - 2.9% (0.8, 6.6)

adjusted analysis confined to patients with all known covariates
Summary of Outcome Measures
IV vs IO Drug Administration (n=661)

Adjusted Absolute Difference (95% CI)*

IO Drugs (unadjusted %’s)

Admission Alive to Hospital
- Amiodarone vs Placebo
 - 35.4% vs 38.9%
- Lidocaine vs Placebo
 - 43.2% vs 38.9%

Discharged Alive
- Amiodarone vs Placebo
 - 19.3% vs 22.5%
- Lidocaine vs Placebo
 - 20.6% vs 22.5%

mRS ≤ 3 at Discharge
- Amiodarone vs Placebo
 - 14.2% vs 16.3%
- Lidocaine vs Placebo
 - 13.8% vs 16.3%

*adjusted analysis confined to patients with all known covariates

p for interaction (IV vs IO)
- **p = 0.08**
 - Amiodarone vs Placebo: 35.4% vs 38.9%, difference: -1.8% (-10.7, 7.1)
 - Lidocaine vs Placebo: 43.2% vs 38.9%, difference: 7.4% (-1.5, 16.4)

- **p = 0.23**
 - Amiodarone vs Placebo: 19.3% vs 22.5%, difference: -1.8% (-9.2, 5.6)
 - Lidocaine vs Placebo: 20.6% vs 22.5%, difference: 0.3% (-7.4, 7.9)

- **p = 0.32**
 - Amiodarone vs Placebo: 14.2% vs 16.3%, difference: -1.5% (-8.1, 5.2)
 - Lidocaine vs Placebo: 13.8% vs 16.3%, difference: -0.8% (-7.5, 5.8)
Summary

Given IV, amiodarone and lidocaine vs placebo were associated with significantly higher . . .

- Hospital admission rate
- Survival to hospital discharge
- Favorable functional survival at hospital discharge

No obvious clinical benefit over placebo seen with IO-administered antiarrhythmics
Limitations

- Vascular access prespecified, but not randomized
- Hospital care not standardized
- Adjusted analysis may not fully correct for imbalances
- Proportion IO:IV recipients relatively small – underpowered to assess statistical interactions
- Did not address anatomic access site or mechanism(s)
Conclusions

• Amiodarone and lidocaine associated with improved clinical outcomes in cardiac arrest given IV but not IO
• Effectiveness of antiarrhythmic drugs in resuscitation may be dependent on route of vascular access
• Findings may explain inconclusive results of drug trials
• Role of IV vs IO drug administration during cardiac arrest merits prospective investigation