Effects of Intra-Resuscitation Antiarrhythmic Administration on Rearrest Occurrence and Intra-Resuscitation ECG Characteristics in the ROC ALPS Trial

Disclosures

• Drs. Salcido and Menegazzi received support from NHLBI grants (K12HL109068, R01HL117979, R21HL135369). Dr. Salcido received grants from the Henry L. Hillman Foundation and a small grant from the Laerdal Foundation and Zoll Foundation for unrelated work.

• The ROC is supported by a series of cooperative agreements to nine regional clinical centers and one Data Coordinating Center (5U01 HL077863-University of Washington Data Coordinating Center, HL077866-Medical College of Wisconsin, HL077867-University of Washington, HL077871-University of Pittsburgh, HL077872-St. Michael’s Hospital, HL077873-Oregon Health and Science University, HL077881-University of Alabama at Birmingham, HL077885-Ottawa Hospital Research Institute, HL077887-University of Texas SW Medical Ctr/Dallas, HL077908-University of California San Diego) from the National Heart, Lung and Blood Institute in partnership with the U.S. Army Medical Research & Material Command, The Canadian Institutes of Health Research (CIHR) - Institute of Circulatory and Respiratory Health, Defence Research and Development Canada, the Heart, Stroke Foundation of Canada and the American Heart Association. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung and Blood Institute or the National Institutes of Health.
ROC Funding Partners

- National Heart, Lung and Blood Institute
- Institute of Circulatory and Respiratory Health of the Canadian Institute of Health Research
- Defence Research and Development Canada
- United States Army
- Heart and Stroke Foundation of Canada
- American Heart Association
Intra-Resuscitation Antiarrythmics

- Stabilize the myocardium
- Prevent rearrest downstream of a shock
- Avoid additional time in VF
- Avoid need for additional shocks
Intra-Resuscitation Antiarrhythmic

VF → Not VF → VF

Recurrent VF / Rearrest
Prehospital Rearrest

• Loss of pulses after ROSC

• Rearrest includes all ECG rhythm presentations of cardiac arrest

• Relatively common (44% in ROC-CCC)

• Strongly associated with poor survival and neurologic outcomes, regardless of rhythm
Intra-Resuscitation Antiarrythmics

• Impact myocardial electrophysiology. Could they….
 • Alter the defibrillation threshold?
 • Change the probability of successful defibrillation?
 • Adversely effect other resuscitation outcomes?
• No difference in Survival / Neurologic outcomes
• Higher rates of Survival to Admission
Why?

I don’t know, but...

Let’s return to our premises.
Premises

• Did A/L/P prevent rearrest?
 • Look for rearrest after ROSC & antiarrhythmic administration

• Did A/L/P alter probability of defibrillation success?
 • Investigate waveform properties of the ECG before defibrillation but after antiarrhythmic administration
Quantitative Waveform Measures

Visually Different

Quantifiably Different
Hypotheses

• H1: Rearrest rates will differ between amiodarone, lidocaine and placebo groups

• H2: Quantifiable features of the ECG will differ between the amiodarone, lidocaine and placebo groups and by rearrest status
Study Design

- Retrospective analysis of the ROC ALPS Trial

- Consider only patients who achieved prehospital ROSC after initial administration of A, L or P

- Cases with ROSC prior to randomization would have had a rearrest in order to be randomized
The Resuscitation Outcomes Consortium
Case Data

- Same dataset compiled for the primary trial (2012-2015)

- EMS-treated out-of-cardiac arrest (OHCA) cases with data abstracted from:
 - Prehospital patient care reports – Demography / Condition / Treatment/Status
 - Defibrillator downloads – CPR Process / ECG / Shock Delivery
 - Hospital records – Patient / Treatment / Outcomes
Rearrest

• Indicated by site-level data abstractors in the patient record

• Any loss of pulses after ROSC

• Time-coded with respect to the treatment record

• Verified by direct signal analysis by the investigative team
Quantitative Waveform Measures

• Centrally uploaded defibrillator download files were extracted and imported into UPitt’s SPAIN OHCA analysis platform

• 3-second ECG segments were parsed corresponding to:
 • First analyzable VF
 • Immediate pre-ROSC VF
 • VF at the onset of rearrest

• Amplitude spectrum area (AMSA), median slope (MS), and centroid frequency (CF) were calculated for each segment
Analysis

• Rearrest rates were compared between A/L/P groups with multivariable logistic regression, adjusting for common patient, condition and treatment variables, as well as ROC site.

• Quantitative waveform measures were compared across A/L/P groups and rearrest status with 2-Way ANOVA, or…

• Between A/L/P groups with 1-Way ANOVA for VF at the onset of rearrest

• Separately considered the association between rearrest and survival
Cohort

ALPS Trial

2,381

ROSC*

1,144 (48%)

1,237 (52%)

Rearrest

503 (44%)

641 (56%)

ECG Available

424 (37%)

No ROSC

No Rearrest
Survival and Neurologic Function by Rearrest Status

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>95% CI</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rearrest</td>
<td>Ref.</td>
<td>Ref.</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td>Rearrest</td>
<td>0.55</td>
<td>(0.39, 0.77)</td>
<td>0.69</td>
<td>(0.48, 0.97)</td>
</tr>
</tbody>
</table>

Adjusted Estimates

ROSC at Emergency Dept. Arrival

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>95% CI</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rearrest</td>
<td>Ref.</td>
<td>Ref.</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td>Rearrest</td>
<td>0.24</td>
<td>(0.18, 0.31)</td>
<td>0.30</td>
<td>(0.22, 0.40)</td>
</tr>
</tbody>
</table>

Prehospital ROSC

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>95% CI</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rearrest</td>
<td>Ref.</td>
<td>Ref.</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td>Rearrest</td>
<td>0.24</td>
<td>(0.18, 0.31)</td>
<td>0.30</td>
<td>(0.22, 0.40)</td>
</tr>
</tbody>
</table>
Rearrest Rates Across A/L/P Groups

Adjusted Estimates

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>1.13</td>
<td>(0.85, 1.52)</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>1.01</td>
<td>(0.75, 1.37)</td>
</tr>
</tbody>
</table>
Quantitative Waveform Measures Across A/L/P Groups Stratified by Rearrest Status (Pre-ROSC)

Differences

By Rearrest
AMSA & MS
(p=0.028, p=0.020)

By A/L/P
MS & CF
(p=0.024, p=0.45)
Interpretation

• This is a complicated, incomplete picture of an even more complicated problem.

• Primary study’s A/L/P associations with survival to arrival / admission would imply a connection to rearrest. However, rearrest is reversible…

• Tendency of placebo to have higher Quantitative Waveform Measures suggests an effect, but the clinical significance of the effect is unclear.

• Lower Quantitative Waveform Measures among rearrest VF suggests a pre-ROSC predictive tool, but one entangled with shock prediction.
Limitations

• Rearrest is more mechanistically broad than recurrent VF

• Rearrest was only ascertained in cases with ROSC after drug.

• We only considered first ROSC / first rearrest.

• ECG analyses only covered a proportion of cases.
Conclusions

• Prehospital rearrest was not associated with amiodarone, lidocaine or placebo administration in the ROC ALPS trial.

• Quantifiable features of the VF ECG waveform differed by rearrest case status and A/L/P group.
Thank You.
Funding Partners
Co-Authors
Mentors
Leo