A loss-of-function variant in \textit{CETP} and risk of CVD in Chinese adults

Zhengming CHEN MBBS DPhil
CKB PI, Nuffield Dept. of Population Health
University of Oxford, UK
for the CKB collaborative group

Disclosure
Research grants from GSK/Merck to support genotyping

AHA, New Orleans, USA, 15 Nov 2016
HDL-C and CHD: observational evidence

LDL-C

Baseline HDL-C (mmol/L): ≤1.25

Hazard ratio (95% CI)

Usual non-HDL cholesterol (mmol/L)

3.0 4.0 5.0 6.0

1.0 2.0 3.0 4.0

HDL-C

Baseline non-HDL-C (mmol/L): 5+

Hazard ratio (95% CI)

Usual HDL cholesterol (mmol/L)

1.0 1.5

0.5 1.0

ERFC: ~25% lower CHD risk per 1 SD (15 mg/dL) higher HDL-C

PSC, Lancet 2007; ERFC, JAMA 2009
HDL cholesterol and CVD risk

- HDL-C is strongly inversely associated with CVD risk, especially CHD, but causal effects are unclear
- Drugs that raise HDL-C (e.g. CETP inhibitors) have the potential for further reducing CVD risk
- REVEAL study should confirm or refute inconclusive results from previous trials of CETP inhibition

REVEAL
Randomized EValuation of the Effects of Anacetrapib through Lipid-modification
CETP and HDL metabolism

CETP: exchanges cholesterol esters for triglycerides between HDL and VLDL particles.
Genetic studies of \textit{CETP} and CVD risk

- \textit{CETP} variants are associated with higher HDL-C and also with lower LDL-C and triglycerides.
- Common \textit{CETP} variants associated with reduced CHD risk, but previous findings are inconclusive.
- East Asians functional variant rs2303790 (c.1376A>G, p.D459G) results in lower CETP mass and activity.
- \textit{CETP} rs2303790 greatly increases HDL-C, with effect size >2 times greater than lead SNP in Europeans.

MR studies can help to assess the effects of lifelong lower CETP activity on CVD (and non-CVD) risks.
China Kadoorie Biobank (CKB)
(Mean age 51, 41% men, 4% obese, 99.98% sample collection)

- 512,891 recruited from 10 localities in 2004-08
- Participants interviewed, measured, and gave plasma and DNA for long-term storage
- All followed up indefinitely via electronic record linkage to deaths and ALL hospital episodes
- Periodic resurvey of 5% surviving participants (allow for enhancements and sources of variation)

Consent for unspecified research use of stored samples
CKB: Location of the 10 survey sites in China
(with different risk exposure and disease patterns)

CETP MR study: design & methods

- 5 genetic variants in CETP gene:
 - 1 East Asian functional variant (D459G gene)
 - 4 other SNPs associated with HDL-C

- 91,500 CKB participants (meta-analysed):
 - Population-based: 75,000
 - CVD case-control: 16,500
 - No prior CVD and statin use

- Lipids and NMR-metabolomics in a subset
 - Mean LDL-C: 92 mg/dL; HDL-C: 48 mg/dL

- 3300 MCE, 8800 IS and 12,000 MCVE

Linear and logistic regressions yielded adjusted per allele effects for traits and incident CVD events
CKB: Lipoprotein subtypes and CVD risk
(A nested case-control study of NMR-metabolomics in 5K)

Myocardial infarction

- Extremely Large VLDL
- Very Large VLDL
- Large VLDL
- Medium VLDL
- Small VLDL
- Very Small VLDL
- IDL
- Large LDL
- Medium LDL
- Small LDL

Ischaemic stroke

- Extremely Large VLDL
- Very Large VLDL
- Large VLDL
- Medium VLDL
- Small VLDL
- Very Small VLDL
- IDL
- Large LDL
- Medium LDL
- Small LDL

* P<0.05, ** P<0.01, *** P<0.0001, with Bonferroni correction
CETP SNPs and major lipid concentrations
(lipids measured using conventional methods in 20K)

<table>
<thead>
<tr>
<th>SNP/Trait</th>
<th>MAF</th>
<th>NObs</th>
<th>HDL-C Estimate (95% CI)</th>
<th>LDL-C Estimate (95% CI)</th>
<th>Triglycerides Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs3764261 (A)</td>
<td>0.16</td>
<td>17834</td>
<td>3.62 (3.30-3.94)</td>
<td>0.94 (0.16-1.71)</td>
<td>-4.75 (-8.74-0.76)</td>
</tr>
<tr>
<td>rs1800775 (A)</td>
<td>0.53</td>
<td>17840</td>
<td>1.38 (1.14-1.62)</td>
<td>0.62 (0.04-1.19)</td>
<td>-3.22 (-6.17-0.27)</td>
</tr>
<tr>
<td>rs708272 (A)</td>
<td>0.41</td>
<td>17828</td>
<td>1.94 (1.70-2.19)</td>
<td>0.86 (0.28-1.44)</td>
<td>-4.34 (-7.32-1.36)</td>
</tr>
<tr>
<td>rs9939224 (G)</td>
<td>0.88</td>
<td>17840</td>
<td>2.32 (1.95-2.69)</td>
<td>1.24 (0.35-2.13)</td>
<td>-3.07 (-7.64-1.50)</td>
</tr>
<tr>
<td>rs2303790 (G)</td>
<td>0.02</td>
<td>17837</td>
<td>6.07 (5.24-6.89)</td>
<td>-0.43 (-2.42-1.55)</td>
<td>-9.07 (-19.25-1.12)</td>
</tr>
<tr>
<td>Gene Score (W)</td>
<td></td>
<td>17763</td>
<td>11.48 (10.62-12.34)</td>
<td>2.82 (0.73-4.91)</td>
<td>-16.22 (-26.94-5.50)</td>
</tr>
</tbody>
</table>

rs2303790 (MAF 2.2%) per allele effect: 6 mg/dL (0.16 mmol/L) HDL-C
(P value = 8.1E-47)
CETP SNPs and apolipoproteins

Apo A1

<table>
<thead>
<tr>
<th>SNP/Trait</th>
<th>MAF</th>
<th>NObs</th>
<th>Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs3764261</td>
<td>0.16</td>
<td>17834</td>
<td>4.70 (4.05-5.36)</td>
</tr>
<tr>
<td>rs1800775</td>
<td>0.53</td>
<td>17840</td>
<td>1.71 (1.22-2.20)</td>
</tr>
<tr>
<td>rs708272</td>
<td>0.41</td>
<td>17828</td>
<td>2.37 (1.87-2.86)</td>
</tr>
<tr>
<td>rs9939224</td>
<td>0.88</td>
<td>17840</td>
<td>3.07 (2.32-3.83)</td>
</tr>
<tr>
<td>rs2303790</td>
<td>0.02</td>
<td>17837</td>
<td>8.53 (6.85-10.21)</td>
</tr>
</tbody>
</table>

Apo B

<table>
<thead>
<tr>
<th>SNP/Trait</th>
<th>NObs</th>
<th>Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs3764261</td>
<td>17834</td>
<td>-0.02 (-0.63-0.58)</td>
</tr>
<tr>
<td>rs1800775</td>
<td>17840</td>
<td>0.11 (-0.33-0.56)</td>
</tr>
<tr>
<td>rs708272</td>
<td>17828</td>
<td>0.21 (-0.24-0.66)</td>
</tr>
<tr>
<td>rs9939224</td>
<td>17840</td>
<td>0.30 (-0.39-0.99)</td>
</tr>
<tr>
<td>rs2303790</td>
<td>17837</td>
<td>-1.44 (-2.98-0.10)</td>
</tr>
</tbody>
</table>

Gene Score (W)

- **Apo A1**: 15.13 (13.37-16.89)
- **Apo B**: -0.27 (-1.89-1.35)
Associations of \textit{CETP} rs2303790 (per allele) with lipid composition in 1H-NMR metabolomics

Changes in composition and particle size (not shown) are consistent with inhibition of CETP, even though it has no major effect on LDL-C concentration.
Associations of CETP rs2303790 with CVD risk

Meta-analysis of 3 East Asia studies:
- 8379 CHD cases, OR=0.95 (0.85-1.07), p=0.41

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>No. of cases</th>
<th>No. of controls</th>
<th>Per G allele Odds Ratio (95% CI)</th>
<th>Uncorrected p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major coronary events</td>
<td>3297</td>
<td>73232</td>
<td>1.17 (0.98, 1.39)</td>
<td>0.09</td>
</tr>
<tr>
<td>Ischaemic stroke</td>
<td>8852</td>
<td>73232</td>
<td>1.02 (0.90, 1.15)</td>
<td>0.78</td>
</tr>
<tr>
<td>Major occlusive events</td>
<td>11612</td>
<td>73232</td>
<td>1.04 (0.94, 1.16)</td>
<td>0.44</td>
</tr>
<tr>
<td>Secondary endpoints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>1742</td>
<td>73232</td>
<td>1.24 (0.98, 1.58)</td>
<td>0.07</td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td>5494</td>
<td>73232</td>
<td>1.08 (0.92, 1.26)</td>
<td>0.36</td>
</tr>
<tr>
<td>Total stroke</td>
<td>13588</td>
<td>73232</td>
<td>1.02 (0.92, 1.13)</td>
<td>0.76</td>
</tr>
<tr>
<td>Fatal occlusive vascular events</td>
<td>2106</td>
<td>73232</td>
<td>1.27 (1.02, 1.57)</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Associations of CETP rs2303790 with non-CVD risk

Significant excess risk of eye diseases, as in one Asia study
Summary and implications

- A LOF variant in *CETP* strongly affects HDL metabolism, mimicking the pharmacological inhibition of CETP.
- The LOF variant had no significant effects on CVD risk.
- In East Asians, increasing HDL-C by CETP inhibition is unlikely to confer appreciable protection against CVD.
- Prospective biobanks with cohort-wide genetic and multiple outcome data can inform drug development.

All 0.5 million CKB samples will be genotyped using custom designed 800K SNPs array (>80K missense/LOF variants)
Acknowledgements

Key members of CKB genetic working group
I Millwood, M Holmes, D Bennett, R Boxall, R Clarke, R Walters, Z Chen

Study website: www.ckbiobank.org