Deletion of Serum and Glucocorticoid-Regulated Kinase 1 (SGK1) in T cells Attenuates Hypertension and Renal/Vascular Dysfunction

Allison E Norlander, Mohamed A Saleh, Arvind K Pandey, Hana A Itani, Jing Wu, Liang Xiao, Jay Kang, Bethany L Dale, David G. Harrison and Meena S. Madhur

Vanderbilt University

FINANCIAL DISCLOSURES:
No relevant financial relationships exist.
Pathophysiology of Hypertension
T helper Subsets

Virus/Intracellular Bacteria
Parasites
Extracellular Bacteria/Fungi
Virus/Intracellular Bacteria

Antigen Presenting Cell

Immune response

Initiation
IFNα/β IL-12
IL-4 + TGFβ

Amplification
Th1 Th2 Th9 Th17 CTL Tfh Treg
IFNγ TNFα IL-4 IL-9
IL-5 IL-13 IL-17

Exaggeration
Autoimmunity Asthma Allergy Autoimmunity Cytokine storm Tumor

Fibrosis

B cell costim IL-21

IL-10 TGFβ

IL17 is Required for the Maintenance of Ang II-induced Hypertension

Ang II: 490 ng/kg/min

(Madhur et al. *Hypertension* 2010)
Salt and Hypertension

- Numerous epidemiological, clinical, and experimental studies have demonstrated a link between dietary salt intake and hypertension.
LETTER

Sodium chloride drives autoimmune disease by the induction of pathogenic T\textsubscript{H}17 cells

Markus Kleinewietfeld1,2, Arndt Manzel3,4, Jens Titze5,6, Heda Kvakken7,8, Nir Yosef2, Ralf A. Linker3, Dominik N. Muller7,9* & David A. Hafler1,2*

LETTER

Induction of pathogenic T\textsubscript{H}17 cells by inducible salt-sensing kinase SGK1

Chuan Wu1*, Nir Yosef2,2*, Theresa Thalhammer1††, Chen Zhu1, Sheng Xiao1, Yasuhiro Kishi1, Aviv Regev2,3 & Vijay K. Kuchroo1,2

Nature. 2013
Effect of Salt on T cells

Th0 → Th17 polarizing cytokines → Th17

SGK1 = serum and glucocorticoid-regulated kinase 1
Th17 polarizing cytokines: IL6, IL1β, IL23, TGFβ

IL17
Effect of Salt on T cells

SGK1 = serum and glucocorticoid-regulated kinase 1
Th17 polarizing cytokines: IL6, IL1β, IL23, TGFβ

Th0

Th17 polarizing cytokines

Th17

Th17 polarizing cytokines

Th17

IL17

IL17

Demonstrated as protective in a model of Experimental Autoimmune Encephalomyelitis
Hypothesis: The salt-sensing kinase SGK1 in T cells plays a role in the development of hypertension.

Structure of SGK1

(Zhao et al. Protein Science 2007)
Where would T cells see elevated salt concentrations?

Mouse Model of T cell SGK1 Deletion

Deletion of SGK1 in CD4+ and CD8+ T cells

Hypertensive Models Tested:
- Ang II
- DOCA-Salt
T cell SGK1 contributes to development of IL17A producing cells in the spleen
Tail cuff Blood Pressure Measurements:
Ang II: SGK1^{fl/fl} x tg^{CD4cre}
Telemetry Blood Pressure Measurements:
Ang II: SGK1^{fl/fl} x tg^{CD4cre}
Tail cuff Blood Pressure Measurements:

DOCA-salt: SGK1^{fl/fl} x tg^{CD4cre}

DOCA/salt model
T Cell SGK1 Modulates Vascular Inflammation (Ang II)
T Cell SGK1 Modulates Vascular Inflammation (Ang II)

SGK1^fl/fl^ SGK1^fl/fl^tgCD4cre

CD45^+ cells (10^3)/aorta

CD3^+ cells (10^3)/aorta

F4/80^+ cells (10^3)/aorta

Sham Ang II
T cell SGK1 Modulates Vascular Inflammation (DOCA-salt)

Sham

DOCA-salt

CD45+ cells (10^3)/aorta

SGK1^fl/fl SGK1^fl/fltg^CD4cre

CD3+ cells (10^3)/aorta

SGK1^fl/fl SGK1^fl/fltg^CD4cre

F4/80+ cells (10^3)/aorta

SGK1^fl/fl SGK1^fl/fltg^CD4cre
T Cell SGK1 Modulates Vascular Reactivity (Ang II)

Vascular Relaxation in Response to Acetylcholine

SGK1^{fl/fl} Control

T cell SGK1 Deficient
SGK1 Modulates Renal Inflammation

- SGK1^{fl/fl}
 - Sham
- SGK1^{fl/fl}
 - Ang II
- SGK1^{fl/fl}^{tg_{CD4cre}}
 - Sham
- SGK1^{fl/fl}^{tg_{CD4cre}}
 - Ang II

Flow cytometry plots showing changes in cell populations with different treatments.
T cell SGK1 Modulates Renal Inflammation (Ang II)

CD45+ cells (10³)/kidney

SGK1^fl/fl SGK1^fl/tgCD4cre

CD3+ cells (10³)/kidney

SGK1^fl/fl SGK1^fl/tgCD4cre

F4/80+ cells (10³)/kidney

SGK1^fl/fl SGK1^fl/tgCD4cre

Sham

Ang II
T Cell SGK1 Contributes to Renal Injury (Ang II)
Sodium channel expression on CD3+ T Cells

- ENaC gamma
- Sodium/Chloride Cotransporter (NCC)
- Sodium/Calcium Exchanger 1 (NCX1)
- Sodium/Calcium Exchanger 2 (NCX2)
- Sodium/Hydrogen Exchanger 1 (NHE1)
- Sodium/Hydrogen Exchanger 6 (NHE6)
- Sodium/Potassium/Chloride Cotransporter 1 (NKCC1)
- Voltage-Gated Sodium Channel 5a (SCN5A)
Inhibition of NKCC1 prevents salt induced upregulation of SGK1 in CD4+ T cells

SGK1

Th17 polarizing cytokines: IL6, IL1β, IL23, TGFβ

Cytokines: - + + + + +
Salt: - - + + + +
Amiloride (ENaC): - - - + + +
Spironolactone (MR): - - - - + +
Furosemide (NKCC1): - - - - - +
Bumetamide (NKCC1): - - - - - +

Fold Change

p=ns p=ns
Working Model

Ang II, DOCA-salt

↑↑ SGK1

Th17

NKCC1

Na+

→ Renal/Vascular Dysfunction

→ Hypertension

Preserved Renal/Vascular Function
Clinical Implications

• Targeting T cell SGK1 may be a novel therapeutic strategy for the treatment of hypertension and its associated end-organ dysfunction.
Acknowledgements:

Mentors:
• Meena Madhur, MD, PhD
• David Harrison, MD

Madhur Lab:
• Mohamed Saleh, PhD
• Bethany Dale
• Fanny Laroumanie, PhD

Harrison Lab:
• Hana Itani, PhD
• Arvind Pandey, MD
• Liang Xiao, PhD
• Jing Wu, PhD
• Mingfang Ao, PhD
• Wei Chen, MD, PhD

Funding:
• NIH T32 Training Grant (Norlander)
• F31 Predoctoral Individual National Research Service Award (Norlander)
• AHA Strategically Focused Prevention Research Network Grant (Harrison/Madhur)
• NIH NHLBI K08 Award (Madhur)