mTORC1 is required for leptin-induced sympathetic activation to the kidney but not brown adipose tissue

Balyssa B. Bell, Donald A. Morgan, and Kamal Rahmouni

Department of Pharmacology
University of Iowa, Iowa City, IA

FINANCIAL DISCLOSURE:
No relationships to disclose.

UNLABELED / UNAPPROVED USES DISCLOSURE:
No unlabeled / unapproved uses to disclose.
Obesity represents a major global health epidemic and increases cardiovascular risk.

Leptin has emerged as a critical link between obesity and hypertension.
Leptin signals energy reserve status and increases sympathetic nerve activity (SNA).

↑ Cardiovascular SNA

↑ Energy Expenditure

↓ Food Intake

↑ Blood Pressure

↑ Adipose Tissue

↓ Food Intake

Leptin
Leptin activates regional sympathetic outflow

Do unique molecular pathways underlie leptin-evoked sympathetic activation to the BAT and kidney?

Leptin action at its receptor activates multiple downstream signaling cascades.

- Leptin activates the JAK2-STAT3 and PI3K-AKT/mTOR pathways.
- PI3K leads to the activation of S6K and mTOR, which in turn activates S6.
- JAK2-STAT3 activation is inhibited by Rapamycin, which reduces food intake and body weight.
- Leptin also activates the STAT5 pathway, which is involved in blood pressure regulation.

References:
- Cota, Science 2006
- Harlan, Cell Metab. 2013
- Cota, Science 2006
Hypothesis:

mTORC1 signaling differentially controls the regional sympathetic effects of leptin to metabolic and cardiovascular regulatory tissues
Experimental Design

C57 → LepRbCre \times Raptorfl/fl → LepRbCre Raptorfl/fl → ICV rapamycin pretreatment → Regional sympathetic nerve responses to ICV leptin
mTORC1 inhibition by rapamycin selectively inhibits renal but not BAT sympathetic responses to leptin.

Δ Renal SNA (%)

Δ BAT SNA (%)

n=5-6, * p<0.05
Experimental Design

C57

ICV rapamycin pretreatment

Regional sympathetic nerve responses to ICV leptin

LepRbCre

Raptorfl/fl

\texttimes

LepRbCre

Raptorfl/fl
Deletion of Raptor from leptin receptor expressing cells prevents leptin-induced S6 but not STAT3 phosphorylation
Deletion of Raptor from leptin receptor expressing cells prevents leptin-induced S6 but not STAT3 phosphorylation.
Mice lacking mTORC1 in leptin receptor expressing cells have impaired renal but not BAT sympathetic responses to leptin

Δ Renal SNA (%)
Δ BAT SNA (%)

n=4-7, * p<0.05
Baseline body weight and food intake are not altered in LepRbCre/Raptorfloxfloxt mice.
LepRbCre/Raptor$^{flox/flox}$ mice exhibit a normal food intake and body weight response to i.p. leptin.
Mean arterial pressure response to ICV leptin (2µg) is blunted in LepRb^{Cre}/Raptor^{flox/flox} mice. n=3, * p<0.05 vs. baseline.
Conclusions

Central mTORC1 signaling and specifically mTORC1 in leptin receptor expressing cells is required for leptin-induced sympathoexcitation to the kidney but not brown adipose tissue.

mTORC1 likely plays an important role in mediating leptin’s effects on blood pressure but not metabolism.
Working Model: mTORC1 uncouples the regional sympathetic effects of leptin
mTORC1 may represent an important mediator of the preserved cardiovascular actions of leptin during obesity
Acknowledgements

Rahmouni Lab
Kamal Rahmouni
Don Morgan
Deng-Fu Guo
Jingwei Jiang
John Reho
Mercy Rajesh
Mohamed Rouabhi
Andrew Olson
Clay Rosinski
Obesity represents a major global health concern and increases cardiovascular risk. Inappropriate leptin action is implicated in the pathophysiology of both obesity and hypertension.
Obesity represents a major global health concern and increases cardiovascular risk.

Leptin has emerged as a critical link between obesity and hypertension.

Leptin has emerged as a critical link between obesity and hypertension.