A Natural Repertoire of T Cells Recognizing ApoB-100 is Generated Early in Life and is Progressively Depleted During Atherosclerotic Disease

Dennis Wolf, Teresa Gerhardt, Jacqueline Miller, Sara McArdle, Takayuki Kimura, La Jolla Inst for Allergy and Immunology, San Diego, CA; Marc Jenkins, Univ of Minnesota Medical Sch, Minneapolis, MN; Klaus Ley, La Jolla Inst for Allergy and Immunology, San Diego, CA

Background: A large body of evidence implicates a role for T cell driven auto-immunity in atherosclerosis. T cells in the atherosclerotic plaque specifically respond to auto-antigens, including ApoB-100, the main protein in low-density lipoprotein (LDL). However, existence, function, and location of auto-reactive T cells in mice have not been demonstrated.

Methods and Results: We have previously identified several peptides derived from mouse ApoB-100 that bind with high affinity to the I-A^b^ MHC class II molecule of C57BL/6 mice. Immunization with these peptides conferred atheroprotection. We designed a novel fluorochrome-labeled P6:I-A^b^ multimer to detect T cells specifically recognizing this complex by flow cytometry. Surprisingly, we detected small numbers of P6:I-A^b^ CD4^+^ T cells in young C57Bl/6 mice that reside in peripheral lymph nodes, indicating the existence of a small natural repertoire of P6:I-A^b^ auto-reactive T cells. This repertoire of T cells was increased in atherosclerosis-prone Apoe^{-/-} and Ldlr^{-/-} mice and showed signs of previous antigen-exposure in 4 week old animals. T cells recognizing P6:I-A^b^ were undetectable directly after birth, but expanded rapidly within the first 28 days in lymph nodes. The majority of P6:I-A^b^ T cells expressed the defining transcription factors of TH1, T-bet, TH17, ROR-gamma T, or of T-regulatory cells, FoxP3. Feeding of Apoe^{-/-} mice with a western diet induced a further skew towards the TH1 and TH17 lineage, but also resulted in a progressive loss of antigen-specific cells over time. In Apoe^{-/-} mice fed with a western diet for 1 year, but not in Apoe^{-/-} mice fed with a standard chow diet, auto-reactive T cells disappeared. Mechanistically, we found enhanced expression of exhaustion markers like ICOS-1 or PD-1 in antigen-specific T cells likely due to persisting antigen-exposure in this model.

Conclusion: Our findings indicate that T cells specifically recognizing a peptide derived from ApoB-100 do not expand during the natural course of disease, but instead exist in atherosclerosis-prone animals in early life. Chronic exposure to antigen induces a progressive loss of auto-reactive T cells.

Disclosure Block:

D. Wolf: None. **T. Gerhardt:** None. **J. Miller:** None. **S. McArdle:** None. **T. Kimura:** None. **M. Jenkins:** None. **K. Ley:** None.