The Association of Pericardial Fat Volume with Incident Atrial Fibrillation in the Multi-Ethnic Study of Atherosclerosis and the Jackson Heart Study

Kerri L. Wiggins, MS, RD
University of Washington
Kerri L. Wiggins, MS, RD

- The Association of Pericardial Fat Volume with Incident Atrial Fibrillation in the Multi-Ethnic Study of Atherosclerosis and the Jackson Heart Study

Financial Disclosure:

- No relevant financial relationship exits
Atrial fibrillation (AF) is a common arrhythmia
- Complications: stroke, heart failure, cognitive decline

Obesity associated with incident AF
- Association persists after adjustment for CVD risk factors
 - Age, hypertension, diabetes

Fat deposited in pericardium
- Pericardial fat metabolically active
- Few studies of pericardial fat volume and incident AF
Pericardial Fat and AF

Potential Mechanisms:

- Increased pericardial fat
 - Inflammatory cytokine secretion
 - Fatty infiltration
 - Autonomic nervous system modulation?

Electric and Structural remodeling

Atrial Fibrillation
Objective

- To address the questions:
 - Is pericardial fat volume associated with incidence of AF?
Objective

To address the questions:

- Is pericardial fat volume associated with incidence of AF?
- Is pericardial fat volume associated with AF above and beyond the joint association with obesity?
Objective

- To address the questions:
 - Is pericardial fat volume associated with incidence of AF?
 - Is pericardial fat volume associated with AF above and beyond the joint association with obesity?
 - Is the association of obesity with incidence of AF mediated by pericardial fat volume?
Methods
<table>
<thead>
<tr>
<th>Study Setting</th>
<th>Multi-Ethnic Study of Atherosclerosis (MESA)</th>
<th>Jackson Heart Study (JHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 sites</td>
<td>Jackson, MS area</td>
</tr>
<tr>
<td></td>
<td>Baseline 2000-2002</td>
<td>Baseline 2000-2004</td>
</tr>
<tr>
<td></td>
<td>6814 men and women</td>
<td>5301 men and women</td>
</tr>
<tr>
<td></td>
<td>o 45-84 years of age</td>
<td>o 20-95 years of age</td>
</tr>
<tr>
<td></td>
<td>o 53% women</td>
<td>o 64% women</td>
</tr>
<tr>
<td></td>
<td>o Four race/ethnic groups</td>
<td>o All African-American</td>
</tr>
<tr>
<td></td>
<td>• African-American (28%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• White (38%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hispanic (22%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chinese descent (12%)</td>
<td></td>
</tr>
</tbody>
</table>
Pericardial Fat Measurement

- Pericardial fat volume by CT scan of the chest
- Same methods, reading center used by both studies

<table>
<thead>
<tr>
<th>MESA</th>
<th>JHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>All suitable scans read</td>
<td>Random selection of scans</td>
</tr>
<tr>
<td>Inter-reader reproducibility 0.99</td>
<td>Inter-reader reproducibility 0.96</td>
</tr>
</tbody>
</table>
AF Ascertainment

- Similar methods used in MESA and JHS
 - ICD-9 codes from hospital discharge (any position)
 - Study ECG at a follow-up visit
 - Medicare claims
 - Fee-for-service Medicare
 - Inpatient or outpatient claim (any position)
 - Available through 2011 in MESA; 2012 in JHS

- Date of incident AF = first date AF noted by any source above
Statistical Analysis

• Exclusions:
 o Prior AF at the time of the CT scan

• Analysis:
 o Cox proportional hazards model
 • Covariates: age, sex, race/ethnicity, study, BMI, height, systolic blood pressure, treated hypertension, glucose status (*normal*, *impaired fasting glucose*, *diabetes*)
 o Time from CT scan to incident AF
 o Pericardial fat volume in **standard deviation** units (sd = 41 ml)
 o Mediation analysis: Bootstrap confidence intervals
Results
Baseline Characteristics

- N = 7989 participants, 615 AF cases
 - MESA: N = 6881, 580 AF cases
 - JHS: N = 1308, 35 AF cases
- Average age 62 years (sd = 10)
- 55% women
Mean Pericardial Fat Volume (ml)

- Volume greater with:
 - Male sex
 - Age
 - BMI
 - Treated hypertension
 - Impaired fasting glucose
 - Diabetes

- Lowest volume in AA
- Greatest volume in whites and Hispanics
AF Incidence Rate

AF incidence per 1000 person-yrs

Sex
- Women
- Men

Age (yrs)
- 30-54
- 55-69
- 70-94

Race
- AA
- Chinese
- Hispanic
- White

Graph showing AF incidence rate by sex, age, and race.
Hazard ratio (HR) for the association of pericardial fat volume with incident AF

<table>
<thead>
<tr>
<th>Model 1</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled MESA and JHS</td>
<td>1.17 (1.09-1.26)</td>
</tr>
</tbody>
</table>

Model 1: age, sex, race/ethnicity, study
Main Results

Hazard ratio (HR) for the association of pericardial fat volume with incident AF

<table>
<thead>
<tr>
<th>Model 1 HR (95% CI)</th>
<th>Model 2 HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled MESA and JHS</td>
<td>1.17 (1.09-1.26)</td>
</tr>
</tbody>
</table>

Model 1: age, sex, race/ethnicity, study

Model 2: Model 1 + height
systolic blood pressure
treated hypertension
glucose status (normal, IFG, diabetes)

Hazard ratio per 1 standard deviation pericardial fat volume (41 ml)
Main Results

Hazard ratio (HR) for the association of pericardial fat volume with incident AF

<table>
<thead>
<tr>
<th></th>
<th>Model 1 HR (95% CI)</th>
<th>Model 2 HR (95% CI)</th>
<th>Model 3 HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled MESA and JHS</td>
<td>1.17 (1.09-1.26)</td>
<td>1.15 (1.06-1.24)</td>
<td>1.04 (0.95-1.14)</td>
</tr>
</tbody>
</table>

Model 1: age, sex, race/ethnicity, study

Model 2: Model 1 + height
- systolic blood pressure
- treated hypertension
- glucose status (*normal, IFG, diabetes*)

Model 3: Model 2 + BMI

Hazard ratio per 1 standard deviation pericardial fat volume (41 ml)
Mediation Analysis

Does pericardial fat volume mediate the association of obesity with incident AF?

- Association of BMI with incident AF*
 - HR 1.31, 95% CI (1.19-1.45)
 - HR 1.28, 95% CI (1.13-1.43) [+ pericardial fat volume]

* adjusted for age, sex, race, study, height, systolic blood pressure, treated hypertension, glucose status
Mediation Analysis

- Does pericardial fat volume mediate the association of obesity with incident AF?
 - Association of BMI with incident AF:
 - HR 1.31, 95% CI (1.19-1.45)
 - HR 1.28, 95% CI (1.13-1.43) [+ pericardial fat volume]
 - Significance Testing
 - Indirect effect of BMI on AF through pericardial fat volume:
 - HR 1.03, 95% CI (0.97-1.10)
 - HR for indirect effect nonsignificant = little evidence of mediation by pericardial fat volume

* adjusted for age, sex, race, study, height, systolic blood pressure, treated hypertension, glucose status
Discussion

- Greater pericardial fat volume associated with incident AF when adjusted for age, sex, race, and other AF risk factors.

- Association attenuated after adjustment for BMI

- Little evidence that association of obesity with incident AF mediated by pericardial fat volume
Strengths/Limitations

- **Strengths:**
 - Large and diverse study population
 - Consistent methods for exposure and outcome measurement
 - Extensive, high-quality covariate data available
 - Large number of incident AF cases
Strengths:
- Large and diverse study population
- Consistent methods for exposure and outcome measurement
- Extensive, high-quality covariate data available
- Large number of incident AF cases

Limitations:
- ICD-9 codes high specificity, imperfect sensitivity
- May have missed paroxysmal AF cases
- Identification of AF may vary by race/ethnicity or study
Conclusions

- Findings not consistent with initial hypothesis:
 - Greater pericardial fat volume is not associated with incidence of AF above and beyond obesity
 - Little evidence that association of obesity with incident AF mediated by pericardial fat volume

- More research on mechanisms needed

- Control of body weight important for AF prevention
Acknowledgements

University of Washington
Susan Heckbert, MD, PhD
Thomas Austin, BA
Barbara McKnight, PhD
Nona Sotoodehnia, MD, MPH

University of Mississippi
Chad Blackshear, MS
Ben Banahan, PhD
Yi Yang, MD, PhD
Adolfo Correa, MD, PhD

Brigham and Women’s Hospital
Jiankang Liu, MD, PhD

University of Minnesota
Alvaro Alonso, MD, PhD

NHLBI and Boston University
Emelia Benjamin, MD, ScM

Duke University
Lesley Curtis, PhD
Thank You

Questions?
Extra Slides
Epicardial fat = Outer wall of myocardium to visceral pericardial layer

Paracardial fat = External to the parietal pericardial layer

Pericardial fat = **Epicardial** fat + **Paracardial** fat
EAT = *Epicardial* adipose tissue
PAT = *Paracardial* adipose tissue
Parietal pericardium indicated by arrow

Pericardial fat is made up of the combination of EAT plus PAT.
CT Scan Region

18 2.5-mm slices:
1.5 cm above to 3.0 cm below superior extent of left main coronary artery
Existing Studies

- **Framingham Heart Study**
 - Cross-sectional study of prevalent AF
 - Only 54 participants had AF
 - All participants were white
 - OR = 1.28 (CI 1.01-1.63)* per sd of pericardial fat volume

- **Heinz Nixdorf Recall Study**
 - Prospective cohort study
 - 50 incident AF events
 - AF ascertained only by two 12-lead ECGs, 5 years apart
 - OR = 1.19 (CI 0.88-1.61)* per sd of pericardial fat volume

*Multiply adjusted, including BMI

Thanassoulis G. *Circ Arrhythm Electrophysiol* 2010;3:345-50
Mahabadi AA. *J Am Coll Cardiol Img* 2014;7:909-16
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>JHS AA</th>
<th>MESA AA</th>
<th>MESA White</th>
<th>MESA Hispanic</th>
<th>MESA Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1308</td>
<td>1855</td>
<td>2568</td>
<td>1470</td>
<td>788</td>
</tr>
<tr>
<td>Age (yrs), mean</td>
<td>60</td>
<td>62</td>
<td>62</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>Men, %</td>
<td>34</td>
<td>45</td>
<td>48</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>BMI (kg/m²), mean</td>
<td>32</td>
<td>30</td>
<td>28</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>SBP (mm Hg), mean</td>
<td>127</td>
<td>132</td>
<td>123</td>
<td>127</td>
<td>125</td>
</tr>
<tr>
<td>Treated hypertension, %</td>
<td>66</td>
<td>47</td>
<td>27</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Current smoking, %</td>
<td>9</td>
<td>18</td>
<td>12</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>IFG, %</td>
<td>45</td>
<td>15</td>
<td>11</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>27</td>
<td>17</td>
<td>6</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>
AF Incidence

MESA
- 9.2 yrs follow-up (avg)
- 580 cases incident AF

JHS
- 4.5 yrs follow-up (avg)
- 35 cases incident AF
Results: AF Incidence - Men

A. Men

AF incidence per 1000 person-yrs

Age group (yrs)

30-54
55-69
70-94

0
10
20
30
40

• White
• Chinese
• Hispanic
• MESA AA
• JHS AA

- White
- MESA AA
- Chinese
- JHS AA
- Hispanic
Results: AF Incidence - Women

A. Women

AF incidence per 1000 person-yrs

Age group (yrs)

30-54, 55-69, 70-94

White, MESA AA, Chinese, JHS AA, Hispanic
Existing studies – from Susan - modify

- Framingham Heart Study
 - Cross-sectional study of prevalent AF
 - Only 54 participants had AF
 - All participants were white
 - OR = 1.28 (CI 1.03-1.58) per SD of pericardial fat volume

- Clinical study
 - Cross-sectional
 - 197 patients with AF
 - No information on race
 - Found greater pericardial fat volume associated with AF

Thanassouli G. Circ Arrhythm Electrophysiol 2010;3:345-50
Al Chekakie MO. J Am Coll Cardiol 2010;56:784-8
AF incidence per 1000 person-yrs

Sex

Women
Men

Age (yrs)
30-54
55-69
70-94

Race
AA
Chinese
Hispanic
White

38
AF Incidence Rate