GAMES – RP Trial

Analysis of intermediate endpoints

W Taylor Kimberly MD PhD and Kevin N Sheth MD
for the GAMES-RP investigators
Disclosures

- Sponsor of the trial is Remedy Pharmaceuticals, Inc.
- AHA / ASA
- NIH / NINDS
Introduction

The GAMES-RP trial was a phase II study that evaluated intravenous glyburide (RP-1127) for the prevention of brain edema after large hemispheric stroke.

The prevention of brain edema represents a new therapeutic strategy.

As a consequence, there is uncertainty about what the appropriate clinical endpoints are for this indication.
Introduction

An important goal of GAMES-RP was to include intermediate endpoints to:

1) learn as much about the disease as possible
2) guide interpretation of clinical outcomes and
3) inform future trial design
GAMES-RP Study Design

<table>
<thead>
<tr>
<th>Design</th>
<th>A multi-center, prospective, randomized double-blind study</th>
</tr>
</thead>
</table>
| Population | - Large hemispheric stroke
 | - IV tPA up to 4.5 hours was permitted
 | - Patients treated with endovascular thrombectomy were excluded |
| Randomization | RP-1127 (intravenous glyburide) vs. Placebo |
| Sites | 18 centers across the U.S. |
| Sample Size | 83 patients enrolled and treated |
GAMES-RP Study Design

STUDY ACTIVITIES

stroke onset

study drug bolus

10 hr

Day 1

Day 2

Day 3

CT scans

Day 4

blood sampling for biomarker analysis

study MRI
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>RP-1127 (N=41)</th>
<th>Placebo (N=36)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Male)</td>
<td>61% (25)</td>
<td>72% (26)</td>
<td>0.30</td>
</tr>
<tr>
<td>Age (Mean)</td>
<td>58</td>
<td>63</td>
<td>0.07</td>
</tr>
<tr>
<td>Race (White)</td>
<td>85% (35)</td>
<td>83% (30)</td>
<td>0.97</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>153</td>
<td>134</td>
<td>0.96</td>
</tr>
<tr>
<td>NIHSS</td>
<td>19</td>
<td>21</td>
<td>0.37</td>
</tr>
<tr>
<td>IV TPA</td>
<td>61% (25)</td>
<td>61% (22)</td>
<td>0.99</td>
</tr>
<tr>
<td>Left side infarct</td>
<td>49% (20)</td>
<td>56% (20)</td>
<td>0.55</td>
</tr>
<tr>
<td>Time to study drug (hr)</td>
<td>8.8</td>
<td>9</td>
<td>0.55</td>
</tr>
<tr>
<td>Mean baseline DWI (cm³)</td>
<td>157</td>
<td>163</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Primary Outcomes

<table>
<thead>
<tr>
<th></th>
<th>RP-1127</th>
<th>Placebo</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite Outcome: mRS 0-4 and avoidance of DC</td>
<td>17 (42%)</td>
<td>14 (39%)</td>
<td>0.77</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious Adverse Events</td>
<td>30 (68%)</td>
<td>28 (72%)</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Other Clinical Endpoints

Kaplan-Meier Survival Curve

Cumulative Probability of Survival

RP-1127 vs Placebo

Days from Baseline

N %

RP-1127 6 (17%)
Placebo 13 (36%)

P=0.06

50% reduction
Other Clinical Endpoints

Adjudicated Neurological deaths

Cumulative Probability of Survival

Days from Baseline

P = 0.03

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-1127</td>
<td>3</td>
<td>7%</td>
</tr>
<tr>
<td>Placebo</td>
<td>9</td>
<td>25%</td>
</tr>
</tbody>
</table>

Adjudicated Edema deaths

Cumulative Probability of Survival

Days from Baseline

P = 0.008

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-1127</td>
<td>1</td>
<td>2%</td>
</tr>
<tr>
<td>Placebo</td>
<td>8</td>
<td>22%</td>
</tr>
</tbody>
</table>
Other Clinical Endpoints

Cochran-Mantel-Haenszel p=0.12
Intermediate Endpoints

The trial did not meet its primary efficacy endpoint

However, there was improved survival and a trend toward improved functional outcome

Therefore, we evaluated intermediate endpoints to determine whether there was additional evidence to support a potential effect of RP-1127
Intermediate Endpoints

The GAMES program was built on a foundation of preclinical evidence that informed the selection of intermediate endpoints.

Neuroimaging biomarker: Midline shift

Plasma biomarker: Total MMP-9
Intermediate Endpoints

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>RP-1127 (N=41)</th>
<th>Placebo (N=36)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to BL MRI (hr)</td>
<td>6.0 ± 1.6</td>
<td>5.8 ± 1.6</td>
<td>0.50</td>
</tr>
<tr>
<td>Time to FU MRI (days)</td>
<td>3.4 ± 0.8</td>
<td>3.5 ± 0.6</td>
<td>0.48</td>
</tr>
<tr>
<td>Baseline DWI volume (mL)</td>
<td>157 ± 62</td>
<td>163 ± 64</td>
<td>0.59</td>
</tr>
<tr>
<td>Baseline MMP-9 (ng/mL)</td>
<td>413 ± 377</td>
<td>427 ± 357</td>
<td>0.88</td>
</tr>
<tr>
<td>Midline shift (mm)</td>
<td>4.6 ± 3.6</td>
<td>8.4 ± 4.9</td>
<td>0.0006</td>
</tr>
<tr>
<td>Average MMP-9 (ng/mL)</td>
<td>211 ± 138</td>
<td>345 ± 251</td>
<td>0.006</td>
</tr>
</tbody>
</table>
Midline Shift

- 5mm
- 9mm

RP-1127

Placebo
Midline Shift

LEVEL OF CONSCIOUSNESS

Post hoc Sensitivity Analysis

72-96 hr or prior to DC

72-96 hr, prior to DC or last scan prior to death

Midline Shift

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Midline shift (mm)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-1127</td>
<td>6.0 mm</td>
<td>p=0.014</td>
</tr>
<tr>
<td>Placebo</td>
<td>9.0 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Midline shift (mm)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-1127</td>
<td>6.0 mm</td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>8.5 mm</td>
<td>p=0.040</td>
</tr>
</tbody>
</table>
• Plasma MMP-9 level is elevated after stroke

• Higher MMP-9 has been associated with brain edema

• Preclinical studies and preliminary studies in GAMES-Pilot suggested that RP-1127 may reduce MMP-9
Massachusetts General Hospital

Total MMP-9

, $P=0.006$
Total MMP-9 and Edema

\[P = 0.024 \]
Limitations

• GAMES-RP was a phase II trial and further study is needed to evaluate clinical efficacy.

• Imaging endpoints are susceptible to missing data, which may introduce bias. Sensitivity analyses evaluated the robustness of the findings.

• There is uncertainty about the role of MMP-9 and what it may reflect (what cellular sources and biological processes). Pharmacologic intervention provides an opportunity to clarify those uncertainties.
• RP-1127 treatment led to a reduction in midline shift, a marker of brain edema
• RP-1127 also reduced plasma total MMP-9 level
• Plasma MMP-9 was associated with edema in this study
Summary

• Taken together, these analyses suggest that RP-1127 reduces brain edema in large stroke patients

• This effect is consistent with the proposed mechanism based on experimental animal models

• The planned GAMES-3 trial will address whether RP-1127 improves clinical outcome
GAMES-RP sites
Acknowledgments

Executive Committee
Kevin N. Sheth
W. Taylor Kimberly
Jordan J. Elm
Sven Jacobson

Neuroimaging Core
Lauren A. Beslow
Gordon K. Sze
Tom W. K. Battey
Ann-Christin Ostwaldt

Biomarker Core
Hannah Irvine

Data Monitoring Committee
J. Donald Easton
Karen C. Johnston
Michael Diringer

Adjudication Committee
Rüdiger von Kummer
Javier Romero
Andrew Demchuk

Other Contributors
J. Marc Simard
Gregory J. del Zoppo
Barney Stern
Holly Hinson
Bradley Molyneaux
Thank you