PRADA Commentary
The Role of Cardioprotection in Breast Cancer Therapy
Cardiac Dysfunction

Study Rationale and Methodology
Results and Interpretation
Questions and Implications

Bonnie Ky, MD, MSCE
Perelman School of Medicine at the University of Pennsylvania
November 11, 2015
Disclosures

• Investigator-initiated award from Pfizer, Inc.

• Consultant for Bristol Myers Squibb

• Research funding from National Institutes of Health
Study Rationale

• Highly important clinical problem
 – Growing burden of CV disease in breast cancer

HF and Cardiomyopathy Cumulative Incidence

Percent Mortality

Study Methodology

• Study Population
 – Single-center
 – Low burden of CV risk factors (1.5% diabetes, 6.3% HTN)
 – All received epirubicin, 22% received trastuzumab

• Study Design
 – Double-blind, placebo-controlled
 – Stratification according to anthracycline dose & trastuzumab

• Primary Outcome Measure – LVEF
 – Derived via Cardiac Magnetic Resonance imaging
 – Highly reproducible and precise
 – LVEF is essentially a surrogate measure
Results and Interpretation

• Changes in LVEF at 10 to 64 weeks
 – Statistically significant, but very modest attenuation of LVEF changes with candesartan, on the order of 2-3%
 – No attenuation of LVEF changes with metoprolol
 – No patients developed heart failure or substantial LVEF declines
Questions

• What are the distinct biologic and physiologic effects of each therapy? Why was there no effect of metoprolol? Would carvedilol have a different result?

• What study population should we target? Higher CV risk?

• What is the optimal primary outcome measure? What is valid and clinically meaningful in cardio-oncology?

• Are there effects on secondary outcome measures? How can we better understand potential benefit?

• What is the effect of longer follow-up time? Will we see more events?
Implications

• Although a positive effect of candesartan may exist, additional research is of necessity prior to clinical practice implementation
 – Larger sample size
 – Extended follow-up time

• This study highlights the critical need to develop a robust consensus definition of cardiotoxicity and a methodology to identify high CV risk patients in cardio-oncology
EXTRA SLIDES
Cardiotoxicity Reported in Clinical Trials

- More profound changes reported in prior trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>N</th>
<th>Median Followup (yrs)</th>
<th>EF Decline (%)</th>
<th>NYHA III/IV HF or Death (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCIRG 001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>617</td>
<td>10.1</td>
<td>~15-17</td>
<td>~3</td>
</tr>
<tr>
<td>BCIRG 006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>1,075</td>
<td>5.4</td>
<td>9.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Dox. & Tras.</td>
<td>1,074</td>
<td></td>
<td>18.6</td>
<td>2.0</td>
</tr>
<tr>
<td>NSABP B-31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dox.</td>
<td>979</td>
<td>2.3</td>
<td>17</td>
<td>0.8</td>
</tr>
<tr>
<td>Dox. & Tras.</td>
<td>993</td>
<td></td>
<td>34</td>
<td>4.1</td>
</tr>
</tbody>
</table>