Miniaturized Transcatheter Delivered Cardiac Pacing: Primary Results of a Worldwide Clinical Trial

The Micra TPS Global Clinical Trial

Dwight W. Reynolds, MD; Gabor Z. Duray, MD, PhD, FESC; Razali Omar, MD; Kyoko Soejima, MD; Petr Neuzil, MD; Shu Zhang, MD; Calambur Narasimhan, MD; Clemens Steinwender, MD, FESC; Lluis Mont, MD; Michael Lloyd, MD; Paul R. Roberts, MD; Venkata Sagi, MD; John Hummel, MD; Maria Grazia Bongiorni, MD, FESC; Reinoud E. Knops, MD; Christopher R. Ellis, MD; Charles C. Gornick, MD; Matthew A. Bernabei, MD; Verla Laager, MA; Kurt Stromberg, MS; Eric R. Williams, BS; Philippe Ritter, MD; Micra Transcatheter Pacing Study Group

American Heart Association Scientific Sessions │ November 9, 2015 │ Orlando, Florida

Permanent Cardiac Pacing Today

• Effective therapy for symptomatic bradycardia, with >350,000 procedures in the US annually *

• 1 in 8 patients may experience a complication with most occurring early after the implant procedure †
 – Lead related 2.4-5.5%
 – Pocket related 0.4-4.8%
 – Pneumothorax 0.9-2.2%
 – Infection 0.3-0.8%

The Micra Transcatheter Pacing System (TPS) Compared to transvenous pacemaker systems:

- >90% smaller (0.8 cc, 2.0 grams)
- Similar longevity and functionality with accelerometer-based rate response and automated pacing capture threshold management

The Micra TPS Global Clinical Trial

Study Design:
• Prospective, non-randomized, single-arm, multi-site, FDA IDE study*

Primary Objectives (6 months):
• Safety: Freedom-from device or procedure-related major complications
 – Death, permanent loss of therapy, hospitalization, prolonged hospitalization, or system revision
 – Target performance >90%, lower CI >83%
• Efficacy: Demonstrate low and stable pacing thresholds
 – ≤ 2V and no increase of >1.5V (relative to implant)
 – Target performance >89%, lower CI >80%

Comparison to Transvenous Pacemaker Systems:
• Safety performance comparison to predefined historical control†
 – 2667 patients from 6 trials of commercially available technology

†3830, 5076, EnRhythm, EnRhythm MRI, Advisa MRI, and SAVEPACe. Events related only to right atrial lead were excluded.
Study Recruitment

Patients:
• Candidates with Class I or II guideline indication* for *de novo* ventricular pacing with no restriction by comorbidity (e.g. COPD)

Enrollment:
• 744 patients from December 2013 to May 2015
• 56 centers in 19 countries in 5 continents
 – North America, Europe, Asia, Australia, and Africa

Patient Flow Diagram

Patients enrolled (n = 744)

Excluded
- Inclusion/exclusion criteria not met (n = 8)
- Withdrew consent (n = 11)

Implant attempted (n = 725)
- Successful implant (n = 719)
- Unsuccessful implant (n = 6)

No Micra 6 month visit
- Awaiting visit (n = 390)
- Death prior to 6-month visit (n = 23)
- Lost to follow-up (n = 1)
- Missed 6-month visit (n = 4)

System modified due to elevated PCT (n = 2)

Six month visit performed (n = 301)
- Paired PCT data not available (n = 6)

Safety objective (n = 725)

Efficacy objective (n = 297)

Analyzed when first 300 patients reached 6 month visit
Baseline Characteristics

Micra patients older, more comorbidities

<table>
<thead>
<tr>
<th></th>
<th>Micra (N = 725)</th>
<th>Historical Control (N = 2667)</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>75.9 ± 10.9</td>
<td>71.1 ± 12.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Male gender</td>
<td>58.8%</td>
<td>55.1%</td>
<td>0.08</td>
</tr>
<tr>
<td>Hypertension</td>
<td>78.6%</td>
<td>67.2%</td>
<td><0.001</td>
</tr>
<tr>
<td>AF</td>
<td>72.6%</td>
<td>36.6%</td>
<td><0.001</td>
</tr>
<tr>
<td>Valvular Disease</td>
<td>42.2%</td>
<td>19.2%</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>28.6%</td>
<td>21.9%</td>
<td><0.001</td>
</tr>
<tr>
<td>CAD</td>
<td>28.0%</td>
<td>38.4%</td>
<td><0.001</td>
</tr>
<tr>
<td>CHF</td>
<td>17.0%</td>
<td>15.0%</td>
<td>0.20</td>
</tr>
<tr>
<td>COPD</td>
<td>12.4%</td>
<td>7.2%†</td>
<td>0.001</td>
</tr>
<tr>
<td>Vascular Disease</td>
<td>7.3%</td>
<td>10.1%</td>
<td>0.032</td>
</tr>
</tbody>
</table>

*P-value from T-test (continuous variables) or Fisher’s Exact test (categorical variables).

†Data parameter not collected across all 6 trials.
Micra TPS Implant

• 99.2% implant success (719 of 725 attempts) with 94 implanters

• Median implant time was 28 min introducer in to introducer out
 – 22 min after 1st 10 implants
Primary Objectives Met

Safety (n = 725):

- 96.0% freedom from device and procedure-related major complication at 6 months (95% CI, 93.9 to 97.3; P<0.0001)
 - No dislodgements
 - No systemic infections

Efficacy (n = 297):

- 98.3% with adequate 6-month pacing capture threshold (95% CI, 96.1 to 99.5; P<0.0001)
Micra Major Complications (n = 725)

<table>
<thead>
<tr>
<th>Complication</th>
<th>Death</th>
<th>Loss of Device Function</th>
<th>Hospitalization</th>
<th>Prolonged Hospitalization</th>
<th>System Revision</th>
<th>Total Events</th>
<th>No. Patients (Kaplan-Meier at 6 Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep vein thrombosis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1 (0.1%)</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1 (0.1%)</td>
</tr>
<tr>
<td>AV fistula / pseudoaneurysm</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5 (0.7%)</td>
</tr>
<tr>
<td>Cardiac perforation / effusion</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>11 (1.6%)</td>
</tr>
<tr>
<td>Elevated thresholds</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2 (0.3%)</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1 (0.1%)</td>
</tr>
<tr>
<td>Cardiac failure</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3 (0.9%)</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1 (0.1%)</td>
</tr>
<tr>
<td>Pacemaker syndrome</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1 (0.1%)</td>
</tr>
<tr>
<td>Presyncope</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1 (0.1%)</td>
</tr>
<tr>
<td>Syncope</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1 (0.1%)</td>
</tr>
<tr>
<td>TOTAL MAJOR COMPLICATIONS</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>18</td>
<td>3</td>
<td>28</td>
<td>25 (4.0%)</td>
</tr>
</tbody>
</table>

Not mutually exclusive as a single event may meet more than one major complication criterion.
51% Fewer Major Complications with Micra vs Transvenous Pacemakers

To adjust for differences in patient populations, propensity matching to a subset of the historical control confirmed a reduction in major complications with Micra (HR: 0.46; 95% CI: 0.28 to 0.74).
Most Major Complications Reduced with Micra vs Transvenous Pacemakers within Subgroups

<table>
<thead>
<tr>
<th>SUBGROUP</th>
<th>No. OF PATIENTS</th>
<th>Micra Better</th>
<th>Transvenous Better</th>
<th>P-value for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>3392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><75</td>
<td>1762</td>
<td></td>
<td></td>
<td>0.7427</td>
</tr>
<tr>
<td>≥75</td>
<td>1630</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1895</td>
<td></td>
<td></td>
<td>0.3494</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1928</td>
<td></td>
<td></td>
<td>0.4915</td>
</tr>
<tr>
<td>Yes</td>
<td>602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2164</td>
<td></td>
<td></td>
<td>0.5507</td>
</tr>
<tr>
<td>Yes</td>
<td>1228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1889</td>
<td></td>
<td></td>
<td>0.1458</td>
</tr>
<tr>
<td>Yes</td>
<td>1503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2869</td>
<td></td>
<td></td>
<td>0.0828</td>
</tr>
<tr>
<td>Yes</td>
<td>523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1030</td>
<td></td>
<td></td>
<td>0.944</td>
</tr>
<tr>
<td>Yes</td>
<td>2362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvular disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2574</td>
<td></td>
<td></td>
<td>0.0582</td>
</tr>
<tr>
<td>Yes</td>
<td>818</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1317</td>
<td></td>
<td></td>
<td>0.2425</td>
</tr>
<tr>
<td>Yes</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBBB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2033</td>
<td></td>
<td></td>
<td>0.8559</td>
</tr>
<tr>
<td>Yes</td>
<td>289</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2191</td>
<td></td>
<td></td>
<td>0.6414</td>
</tr>
<tr>
<td>Yes</td>
<td>223</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Healthcare Utilization

54% Fewer Hospitalizations and 87% Fewer System Revisions with Micra versus Transvenous Pacemakers

<table>
<thead>
<tr>
<th>6-Month Kaplan-Meier Estimates</th>
<th>Micra (n=725)</th>
<th>Historical Control (n=2667)</th>
<th>Relative Risk Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Major Complications</td>
<td>4.0%</td>
<td>7.4%</td>
<td>51%</td>
</tr>
<tr>
<td>Death</td>
<td>0.1%</td>
<td>0%</td>
<td>NS</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>2.3%</td>
<td>3.9%</td>
<td>54%</td>
</tr>
<tr>
<td>Prolonged Hospitalization</td>
<td>2.6%</td>
<td>2.4%</td>
<td>NS</td>
</tr>
<tr>
<td>System Revision</td>
<td>0.4%</td>
<td>3.5%</td>
<td>87%</td>
</tr>
<tr>
<td>Loss of device function</td>
<td>0.1%</td>
<td>0%</td>
<td>NS</td>
</tr>
</tbody>
</table>

Not mutually exclusive as a single event may meet more than one major complication criteria.

NS = Not significant
Micra Pacing Thresholds

Battery Longevity Estimate:
• Based on use conditions of the 300 patients with 6-month data, median battery longevity estimate is 12.5 years*

*Use conditions included: median pacing 49%, median pacing threshold 0.50V, median impedance 573Ω; estimated longevity range of 6.0-14.6 years.
Micra Electrical Performance

R-WAVE AMPLITUDE

- **Implant** (n=690): 11.2
- **Discharge** (n=673): 12.8
- **1-month** (n=634): 15.0
- **3-month** (n=463): 15.3
- **6-month** (n=274): 15.3
- **12-month** (n=58): 16.4

Mean ± standard deviation

PACING IMPEDANCE

- **Implant** (n=719): 724
- **Discharge** (n=717): 679
- **1-month** (n=676): 643
- **3-month** (n=504): 629
- **6-month** (n=301): 627
- **12-month** (n=62): 621

Mean ± standard deviation
Conclusions

The Micra transcatheter ventricular pacemaker was successfully implanted (99.2%) in clinically diverse patients around the world, while meeting prespecified safety and efficacy endpoints.

Major complications occurred in 4% of patients, 51% less than the transvenous pacemaker control group.

Importantly, this resulted in 54% fewer hospitalizations and 87% fewer system revisions, led by the elimination of pneumothoraces and absence of Micra dislodgements.
Participating Centers

Gabor Zoltan Duray, MD, Magyar Honvédség Honvédkorház, Budapest, Hungary
Josep Brugada, MD, Hospital Universitari Clinic de Barcelona, Barcelona, Spain
Clemens Steinwender, MD, Allgemeines Krankenhaus der Stadt Linz, Linz, Austria
Petr Neuzil, MD, Nemocnice Na Homolce, Praha, Czech Republic
Philippe Ritter, MD, Hôpital Haut-Lévêque - CHU de Bordeaux, Bordeaux, France
Michael Lloyd, MD, Emory University Hospital, Atlanta, GA
Venkata Sagi, MD, Baptist Heart Specialists, Jacksonville FL
Paul Roberts, MD, Southampton General Hospital, Southampton, United Kingdom
John Hummel, MD, The Ohio State University, Columbus, OH
Razali Omar, MD, National Heart Institute, Kuala Lumpur, Malaysia
Reinoud E. Knops, MD, Academisch Medisch Centrum, Amsterdam, Netherlands
Charles Gornick, MD, Minneapolis Heart Institute Foundation, Minneapolis, MN
Maria Grazia Bongiorni, MD, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
Christopher Ellis, MD, Vanderbilt University, Nashville, TN
Efrain Gonzalez, MD, Baptist Hospital of Miami, Miami, FL
Lucas V.A. Boersma, MD, St. Antonius Ziekenhuis, Nieuwegein, Netherlands
Larry Chinitz, MD, NYU Langone Medical Center, New York, NY
Matthew Bernabei, MD, Lancaster General Hospital, Lancaster, PA
Kyoko Soejima, MD, Kyorin University Hospital, Tokyo Japan
Timothy Shinn, MD, Michigan Heart, Ypsilanti, MI
Randy Jones, MD, Providence Health & Services, Portland, OR
John Schoenhard, MD, CentraCare Heart & Vascular Center, Saint Cloud, MN
Calambur Narasimhan, MD, CARE Hospital, Hyderabad, India
Kengo Kusano, MD, National Cerebral and Cardiovascular Center, Osaka Japan
Francois Philippon, MD, UICPQ, Quebec, QC
Brett Atwater, MD, Duke University Medical Center, Durham, NC
Andrew Voigt, MD, University of Pittsburgh Medical Center, Pittsburgh, PA
Taku Asano, MD, Showa University Hospital, Tokyo Japan
Robert Kowal, MD, Baylor Research Institute, Dallas, TX
Timothy Alexander Simmers, MD, Catharina Ziekenhuis, Eindhoven, Netherlands
Goran Milasinovic, MD, Klinicki Centar Srbije, Republic of Serbia
Vinay Kumar Bahl, MD, All India Institute of Medical Sciences, New Delhi, India
John Seger, MD, Baylor Saint Luke's Medical Center, Houston, TX
Michael Shehata, MD, Cedars-Sinai Medical Center, Los Angeles, CA
Bernard T. Thibault, MD, Montreal Heart Institute, Montreal, QC
Toshiyuki Ishikawa, MD, Yokohama City Hospital, Yokohama-shi Kanagawa, Japan
Jasbir Sra, MD, Aurora Cardiovascular Services, Milwaukee, WI
Michael Giocondo, MD, Mid America Heart Institute, Kansas City, MO
Eric Johnson, MD FACC, The Stern Cardiovascular Foundation, Germantown, TN
Shu Zhang, MD, Fuwai Hospital, Beijing, China
Bruce Wilkoff, MD, Cleveland Clinic, Cleveland, OH
Jack Collier, MD, Oklahoma Heart Hospital Research Foundation, Oklahoma City, OK
John Hill, MD, Princess Alexandra Hospital, Brisbane, Australia
Panos E. Vardas, MD, University General Hospital, Heraklion-Creta, Greece
Suneet Mittal, MD, The Valley Hospital, Ridgewood, NJ
Eric Grubman, MD, Yale University, New Haven, CT
John Ferguson, MD, University of Virginia Medical Center, Charlottesville, VA
Jesper Hastrup Svendsen, MD, Rigshospitalet, København, Denmark
Ashley Chin, MD, Groote Schuur Hospital, Cape Town, South Africa
John Rogers, MD, Scripps Green Hospital Scripps Clinic Torrey Pines, La Jolla, CA
Ram Jadonath, MD, North Shore LIJ Health System, Manhasset, NY 11030
Sanjay Tyagi, MD, Govind Ballabh Pant Hospital, New Delhi, India
Magdi Ghali, MD, Iowa Heart Center, West Des Moines, IA
Robert Coyne, MD, Morristown Memorial Hospital, Morristown, NJ
Dwight Reynolds, MD, University of Oklahoma, Oklahoma City, OK
Douglas Esberg, MD, Lankenau, Wynnewood, PA