Human Stomach Cell Gastrin Inhibits Renal NHE3 and NaKATPase in Concert with the Renal D1R

John Gildea, Peng Xu, Chi Zhang, Dora Bigler Wang, Hanh Tran, Pedro Jose, Robin Felder
Department of Pathology, University of Virginia
Gastro-renal axis: Stomach tells kidney to alter sodium excretion through gastrin.

Slide courtesy of PA Jose MD PhD
Introduction

• Sodium balance:
 Sodium intake = Sodium excretion in urine

• Sodium intake > Sodium excretion
 Increase blood pressure

• Oral NaCl load produces a greater natriuresis than an intravenous infusion of the same amount of NaCl*.

• Several gut hormones have been proposed to mediate the natriuresis following an oral sodium load, including uroguanylin, cholecystokinin, and gastrin.

Gastrin

- Secreted by G cells in the antrum of the stomach, duodenum, and the pancreas.
- Stimulates secretion of gastric acid (HCl) by the parietal cells of the stomach and aids in gastric motility.
- Food which contains sodium increases serum gastrin levels.
Expression of gastrin in mouse stomachs exposed ex vivo (30 min) to distilled water, 0.56% NaCl, or 0.84% NaCl

*P<0.05 vs. Distilled H₂O, #P<0.05 vs. others, n=3/group, one-way ANOVA, Holm-Sidak test

Dr. Pedro Jose (GW University)
Mice lacking of Gastrin are hypertensive and salt sensitive

Dr. Pedro Jose (GW University)
Gastrin interacts with dopamine receptors in kidney

G = glomerulus
PCT = proximal convoluted tubule
CCKBR = Cholecystokinin B receptor
NHE3 = sodium–hydrogen exchanger 3

Chen et al., 2013
Banday and Lokhandwala 2013

Dr. Pedro Jose (GW University)
Hypothesis: G-cells are sodium sensing cells in stomach, and similar to the kidney are regulated by the dopaminergic system.
Gastrin Expression Increased with Sodium Treatments in Two Gastrin-secreting Cell lines

Gastrin RNA Expression (2^ΔCT)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>SW</th>
<th>SW150</th>
<th>SW200</th>
<th>AGS</th>
<th>AGS150</th>
<th>AGS200</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MON</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

SW: SW626
AGS: AGS gastric carcinoma
150: 150 mM NaCl
200: 200 mM NaCl
VEH: Vehicle
MON: Monensin
LE: LE300, D_1R/D_5R antagonist
G-Cells Identification

Gastrin Pha-l

Gastrin + Pha-l Merge

Gastrin Pha-l Merge

G-cell G-cell G-cell

G-cell SW626

Gastrin No Primary

Pha-l: Phytohaemagglutinin-leucoagglutinin

RT-PCR

G-Cell SW626

Gastrin

Actin

Lab of Salt Sensitivity, Hypertension and Automation
Human G-Cells Express the Dopamine-1 Receptor (D₁R)
Fenofibrate Treatment - a PPARα Agonist

A

Control (CT) Fenofibrate (FENO)

Gastrin Gastrin

B

C

* P=0.0789

FENOH: Fenofibrate, PPARα agonist
LE300: D₁R/D₅R antagonist

Lab of Salt Sensitivity, Hypertension and Automation
Gastrin Inhibits NHE3 and Na/KATPase through PLC Pathway

SKF83822 (822, cAMP specific D1-like agonist), Gastrin1 (GAS, CCKB agonist), U73122 (PLC inhibitor). PLC (Phospholipase C). AngII (Angiotensin II agonist)

* P<0.05 VS VEH; # P<0.05 VS GAS or 822; ** P<0.05 VS 822+GAS
The Molecular View of the Gastro-Renal Axis

Fenofibrate = PPARα agonist; PLC, Phospholipase C
Acknowledgement

Felder Lab:
- Dr. Robin Felder
- Dr. John Gildea
- Beth McGrath
- Chi Zhang
- Dr. Dora Bigler Wang
- Rob Gaglione
- Lisa Tran

Collaborators:
- Dr. Pedro A. Jose
- Dr. Araz Toumadje
- Dr. Manoj Patel
- James Hounshell
- Dr. Robert Carey
- Brandon Kemp
- Nancy Howell
- Fei Yan
- Dr. Zhuo Fu

Funding
- NHLBI
- NIDDK