Critical Limb Ischemia Progression is associated with an Inflammatory Profile

ATVB 2015
Hendrik Gremmels
University Medical Center Utrecht
Presenter Disclosure

Hendrik Gremmels, MD

“CLI progression is associated with an inflammatory profile”

FINANCIAL DISCLOSURE
No relevant financial relationship exists
Introduction

• Critical Limb Ischemia (CLI) is the most severe manifestation of peripheral arterial disease, presenting with ischemic rest pain and/or ulceration.
• Treatment options are often limited, leading to major amputation in 20-40% of cases.
• Decision to amputate is often subjective: need for objective predictors of disease progression.
• Existing prediction models perform poorly (AUC ca. 60%).
Study population: JUVENTAS Cohort

• 112 patients were followed for 6 months after inclusion in a RCT investigating bone-marrow mononuclear cells as therapy for CLI

 – Inclusion criteria were severe infrapopliteal occlusion (Fontaine IIb, III or IV)
 – ABI < 0.6

• Recorded primary outcomes: major amputation and death

• 34 control patients
<table>
<thead>
<tr>
<th>Juventas Baseline</th>
<th>Total Cohort (n=112)</th>
<th>Primary Endpoint (n=27)</th>
<th>No Primary Endpoint (n=85)</th>
<th>P-Value</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td>77/35 (31%)</td>
<td>18/9 (33%)</td>
<td>59/26 (31%)</td>
<td>0.98</td>
<td>21/13</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>66 [58-74]</td>
<td>71 [62-78]</td>
<td>65 [55-72]</td>
<td>0.03</td>
<td>65 [60-72]</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>26.6 (4.54)</td>
<td>25.9 (5.45)</td>
<td>26.8 (4.24)</td>
<td>0.43</td>
<td>23.2 (2.32)</td>
</tr>
<tr>
<td>Smoking (Current/Past/Never)</td>
<td>27/72/13</td>
<td>6/15/6</td>
<td>21/57/7</td>
<td>0.09</td>
<td>0/7/27</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>4.29 (1.10)</td>
<td>4.16 (1.06)</td>
<td>4.33 (1.11)</td>
<td>0.47</td>
<td>4.91 (0.96)</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.20 (0.44)</td>
<td>1.22 [0.54)</td>
<td>1.20 (0.41)</td>
<td>0.92</td>
<td>1.41 (0.53)</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.45 [0.9-2.0]</td>
<td>1.2 [0.9-1.7]</td>
<td>1.6 [0.9-2.0]</td>
<td>0.38</td>
<td>0.6 [0.6-0.8]</td>
</tr>
<tr>
<td>Hemoglobin (mmol/l)</td>
<td>8.17 (1.08)</td>
<td>7.66 (0.84)</td>
<td>8.32 (1.11)</td>
<td>0.0016</td>
<td>8.9 (0.81)</td>
</tr>
<tr>
<td>History of CVA</td>
<td>8 (7.1%)</td>
<td>5 (18.5%)</td>
<td>3 (3.5%)</td>
<td>0.019</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>History of MI or Angina</td>
<td>43 (38.4%)</td>
<td>12 (44.4%)</td>
<td>31 (36.4%)</td>
<td>0.5</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>History of Major Amputation</td>
<td>9 (8.0%)</td>
<td>4 (14.8%)</td>
<td>5 (5.9%)</td>
<td>0.22</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>History of Dialysis</td>
<td>4 (3.6%)</td>
<td>0 (0.0%)</td>
<td>4 (4.7%)</td>
<td>0.57</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Rutherford class (2/3/4/5/6)</td>
<td>1/7/39/62/3</td>
<td>0/0/7/19/1</td>
<td>1/7/32/43/2</td>
<td>0.27</td>
<td>0</td>
</tr>
<tr>
<td>Fontaine class (IIB,III,IV)</td>
<td>8/39/65</td>
<td>0/7/20</td>
<td>8/32/45</td>
<td>0.09</td>
<td>0</td>
</tr>
<tr>
<td>Ulcer</td>
<td>65 (58.0%)</td>
<td>20 (74%)</td>
<td>46 (54%)</td>
<td>0.013</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Ulcer Area (cm²)</td>
<td>1.88 [1.0-4.0]</td>
<td>2.38 [1.0-5.0]</td>
<td>1.62 [0.99-3.5]</td>
<td>0.43</td>
<td>0</td>
</tr>
</tbody>
</table>
Sub-Study design and methods

• Peripheral blood plasma at inclusion

• Cytokine panel by multiplex ELISA
 – GROα, HGF, LIF, SCF, SCGFβ, SDF1α, TRAIL, IL6, IL8, FGFβ, GCSF, GMCSF, IP10, MCP1, PDGFβb, RANTES, TNFα and VEGF

• Plasma values of cytokines were related to major outcomes
 – Compound outcome: Amputation or death
 – Amputation-free survival

• Univariate and multivariate prediction models were created to predict amputation and death
Results

- Pro-inflammatory cytokines markers show the greatest potential for identifying patients that are likely to undergo amputation.

- Particularly Interleukin 6 (IL-6) is highly abundant in patients at-risk.
IL6 predicts amputation

- Kaplan Meier analysis shows IL-6 levels are associated with amputation-free survival (p=0.009)
Prediction of outcomes

- IL-6 is the best predictor for amputation or death at 6 months (AUC = 73%)
- Additional parameters (Hb and ABI) further increase sensitivity and specificity (AUC = 78%)
Comparison to existing models

- Models using IL-6 perform well compared to existing prediction scores
 - Prevent 3
 - Finnvasc
 - BASIL

<table>
<thead>
<tr>
<th>Model</th>
<th>C-Statistic</th>
<th>AUC + 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevent 3</td>
<td></td>
<td>61.70 [50.30 , 73.10]</td>
</tr>
<tr>
<td>Finnvasc</td>
<td></td>
<td>62.20 [50.20 , 74.20]</td>
</tr>
<tr>
<td>BASIL</td>
<td></td>
<td>72.40 [60.10 , 84.70]</td>
</tr>
<tr>
<td>IL6 Alone</td>
<td></td>
<td>73.50 [63.90 , 83.10]</td>
</tr>
<tr>
<td>IL6, Hb and ABI</td>
<td></td>
<td>78.20 [66.90 , 89.50]</td>
</tr>
</tbody>
</table>
Amputation vs Death

In contrast to traditional risk factors, IL-6 levels are primarily associated with amputation, less with mortality.
Example Optimal Decision Rule
Conclusions

• Critical Limb Ischemia is associated with high morbidity and reduced quality of life
• Levels of pro-inflammatory cytokines are markedly increased in patients with Critical Limb Ischemia
• IL-6 levels predict amputation within 6 months

• Utilization of IL-6 as biomarker may add in the development of tailored treatment plans for CLI patients
• Further research may elucidate which factors are causally involved in disease progression
Acknowledgements

Juventas Study Group:
Martin Teraa, MD, PhD
Ralf Sprengers, MD, PhD
Yolanda van der Graaf, MD, PhD
Frans Moll, MD, PhD
Marianne C. Verhaar, MD, PhD
JUVENTAS Results

Amputation at 6 Months

- Placebo: 10 / 79
- BM-MNC: 15 / 81

Death at 6 months

- Placebo: 5 / 79
- BM-MNC: 4 / 81
ABI progression versus Time

[Graph showing ABI progression over time for different tertiles of IL6]
IL-6 ROC

AUC: 77.4% (61.0%–93.7%)