Early loss of normal body weight in multiethnic US populations

Christy Avery
Department of Epidemiology
University of North Carolina
Disclosures

We have no relevant relationships to disclose.
Early Transitions to Overweight and Obesity in Minority Populations

• 69% of American adults are overweight or obese
 – Greatest burden among African Americans (82%), American Indians (83%), and Hispanic/Latinos (77%).

• Minority groups may transition away from normal weight at younger ages.

• Few studies evaluated weight transitions across life course using multi-ethnic, contemporary data.
Overweight and Obesity Transitions: State of the Literature To-Date

• Longitudinal designs leveraging non-contemporary data with narrow age ranges
 – Generalizable to present day?
 • Overweight and obesity secular trends
 • Demographic shifts
 – Estimated transitions across narrowly defined ages.
 • Are there “at-risk” age epochs?
Overweight and Obesity Transitions: State of the Literature To-Date

• Longitudinal designs leveraging non-contemporary data with narrow age ranges
 – Generalizable to present day?
 • Overweight and obesity secular trends
 • Demographic shifts
 – Estimated transitions across narrowly defined ages.
 • Are there “at-risk” age epochs?

Are there any potential compromises?
Net Transitions

• Markov-type model used in operations research
• Offers a compromise: estimation of net transitions from cross-sectional data given assumptions are satisfied:
 – Transitions remain stable across time
• Estimation of individual transitions would require longitudinal data.

Kassteele et al., 2012
Net Transitions: Longitudinal Data Example

2014

Normal weight
N=100

Overweight
N=100
Net Transitions: Longitudinal Data Example

2015

Normal weight
N=94

Overweight
N=106
Net Transitions: Longitudinal Data Example

Normal weight
N=94

2015

Overweight
N=106
Net Transitions: Longitudinal Data Example

Net movement:
• A net $8 - 2 = 6$ people transition from normal weight to overweight.
Net Transitions: Longitudinal Data Example

Net movement:
- A net $8 - 2 = 6$ people transition from normal weight to overweight.
- The net transitions from overweight to normal weight = 0.
Net Transitions: Longitudinal Data Example

Net transition probability: 6/100 or 6%.
Net Transitions: Longitudinal Data Example

We can use cross-sectional data to validly estimate net transitions under the assumption that transitions remain stable over time. Estimation of individual transitions requires longitudinal data.
Objective

Estimate race/ethnic, sex- and age-specific (18-75) weight category 1-year net transitions in multi-ethnic populations:

– American Indians
– African Americans
– Hispanic/Latinos
– European Americans
Cross-Sectional Data Sources and Measurements

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Race/ethnic population</th>
<th>Years data collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Health and Nutrition Examination Survey</td>
<td>11,901</td>
<td>African American/European American</td>
<td>2007-12 (3 waves)</td>
</tr>
<tr>
<td>Strong Heart Family Study</td>
<td>3,365</td>
<td>American Indian</td>
<td>2001-03 (phase IV)</td>
</tr>
<tr>
<td>Hispanic Community Health Study/Study of Latinos</td>
<td>16,332</td>
<td>Hispanic/Latino</td>
<td>2008-11 (baseline)</td>
</tr>
</tbody>
</table>

- **Outcome**: BMI-classified weight categories
 - Growth curves used for populations <20 years
<table>
<thead>
<tr>
<th>Race/ethnicity</th>
<th>Sex</th>
<th>N</th>
<th>% Normal weight</th>
<th>% Overweight</th>
<th>% Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American</td>
<td>Female</td>
<td>2,037</td>
<td>22.4</td>
<td>25.1</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>2,024</td>
<td>34.9</td>
<td>29.3</td>
<td>35.9</td>
</tr>
<tr>
<td>American Indian</td>
<td>Female</td>
<td>2,050</td>
<td>15.8</td>
<td>23.1</td>
<td>61.1</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1,314</td>
<td>17.7</td>
<td>28.8</td>
<td>53.4</td>
</tr>
<tr>
<td>European American</td>
<td>Female</td>
<td>3,865</td>
<td>39.5</td>
<td>28.3</td>
<td>32.3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>3,975</td>
<td>29.1</td>
<td>38.0</td>
<td>32.9</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>Female</td>
<td>9,792</td>
<td>24.3</td>
<td>33.4</td>
<td>42.3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>6,540</td>
<td>23.2</td>
<td>40.3</td>
<td>36.6</td>
</tr>
</tbody>
</table>
Participant Demographics By Race/Ethnicity and Sex

<table>
<thead>
<tr>
<th>Race/ethnicity</th>
<th>Sex</th>
<th>N</th>
<th>% Normal weight</th>
<th>% Overweight</th>
<th>% Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American</td>
<td>Female</td>
<td>2,037</td>
<td>22.4</td>
<td>25.1</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>2,024</td>
<td>34.9</td>
<td>29.3</td>
<td>35.9</td>
</tr>
<tr>
<td>American Indian</td>
<td>Female</td>
<td>2,050</td>
<td>15.8</td>
<td>23.1</td>
<td>61.1</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1,314</td>
<td>17.7</td>
<td>28.8</td>
<td>53.4</td>
</tr>
<tr>
<td>European American</td>
<td>Female</td>
<td>3,865</td>
<td>39.5</td>
<td>28.3</td>
<td>32.3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>3,975</td>
<td>29.1</td>
<td>38.0</td>
<td>32.9</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>Female</td>
<td>9,792</td>
<td>24.3</td>
<td>33.4</td>
<td>42.3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>6,540</td>
<td>23.2</td>
<td>40.3</td>
<td>36.6</td>
</tr>
</tbody>
</table>
Participant Demographics By Race/Ethnicity and Sex

<table>
<thead>
<tr>
<th>Race/ethnicity</th>
<th>Sex</th>
<th>N</th>
<th>% Normal weight</th>
<th>% Overweight</th>
<th>% Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American</td>
<td>Female</td>
<td>2,037</td>
<td>22.4</td>
<td>25.1</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>2,024</td>
<td>34.9</td>
<td>29.3</td>
<td>35.9</td>
</tr>
<tr>
<td>American Indian</td>
<td>Female</td>
<td>2,050</td>
<td>15.8</td>
<td>23.1</td>
<td>61.1</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1,314</td>
<td>17.7</td>
<td>28.8</td>
<td>53.4</td>
</tr>
<tr>
<td>European American</td>
<td>Female</td>
<td>3,865</td>
<td>39.5</td>
<td>28.3</td>
<td>32.3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>3,975</td>
<td>29.1</td>
<td>38.0</td>
<td>32.9</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>Female</td>
<td>9,792</td>
<td>24.3</td>
<td>33.4</td>
<td>42.3</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>6,540</td>
<td>23.2</td>
<td>40.3</td>
<td>36.6</td>
</tr>
</tbody>
</table>

Age 18: 49-73% of participants classified as normal weight.
American Indian Females: Normal Weight-Overweight Net Transitions

1-year net transition probability (95% CI)
American Indian Females: Normal Weight-Overweight Net Transitions

Age 18: 6.0% (5.1, 6.9%)
American Indian Females: Normal Weight-Overweight Net Transitions

Interpretation: Among normal weight American Indian females aged 18 years, a net 6.0% transitioned to overweight one year later.
Race/Ethnic and Sex-Specific Normal Weight-Overweight Net Transitions

American Indians African Americans European Americans Hispanic/Latinos

1-year net transition probability (95% CI)

Age
Race/Ethnic and Sex-Specific Normal Weight-Overweight Net Transitions

American Indians African Americans European Americans Hispanic/Latinos

Males

Females

1-year net transition probability (95% CI)

Age

23
Consistent Patterning of Normal Weight-Overweight Net Transitions

American Indians African Americans European Americans Hispanic/Latinos

Males

Females

1-year net transition probability (95% CI)

Age
Normal Weight-Overweight Net Transitions Peak at Different Ages

Peak at ~20 years

American Indians African Americans European Americans Hispanic/Latinos

1-year net transition probability (95% CI)

Age
Normal Weight-Overweight Net Transitions Peak at Different Ages

- Peak at ~20 years
- Peak at ~30 years

- American Indians
- African Americans
- European Americans
- Hispanic/Latinos

Age

1-year net transition probability (95% CI)
Race/Ethnic and Sex-Specific Overweight to Obesity Net Transitions

American Indians African Americans European Americans Hispanic/Latinos

Females

1-year net transition probability (95% CI)

Males

1-year net transition probability (95% CI)
Overweight to Obesity Net
Transitions Peaked at 18 Years

American Indians African Americans European Americans Hispanic/Latinos

Males

Females

1-year net transition probability (95% CI)
Overweight to Obesity Net Transitions Peaked at 18 Years

American Indians African Americans European Americans Hispanic/Latinos

Age 18: 10.6% (7.0, 14.2%)
Overweight to Obesity Net Transitions Peaked at 18 Years

American Indians | African Americans | European Americans | Hispanic/Latinos

Females

1-year net transition probability (95% CI)

Age 18: 10.6% (7.0, 14.2%)
Age 18: 5.6% (4.1, 7.2%)
Key Modeling Assumption: Transition Stability Over Time

• Assumption evaluated using NHANES data:
 – 2007-2008, 2009-10, and 2011-12 waves

• Key steps:
 – Calculate normal weight, overweight, and obesity prevalence in 2009-10 and 2011-12 (observed)
 – Use 2007-08 net transitions to project normal weight, overweight, and obesity prevalence in 2009-10 and 2011-12 (estimated)
Overlapping Observed and Estimated Prevalence Proportions Suggest Stability

Observed normal weight prevalence, 2011-12

Estimated normal weight prevalence (2007-08 data)
Study Limitations

• Generalizability of results?
• Secular changes in obesity environment?
• Key modeling assumptions only evaluated in NHANES data.
Conclusions

- Until middle-age, net transitions favored movement towards overweight and obesity.
 - Disparities in net transitions already apparent at age 18
- Population-specific targeting of programs to promote normal weight among American Indian, African American female, and Hispanic/Latino adolescents warranted.
Acknowledgements and Funding

University of North Carolina at Chapel Hill: Katelyn M. Holliday, Sujatro Chakladar, Joseph C. Engeda, Shakia T. Hardy, Christina Shay, Marston Youngblood, Gerardo Heiss, Dan Yu Lin, Donglin Zeng

University of Miami: Ashley E. Moncrieft

Albert Einstein College of Medicine: Robert J. Ostfeld

NIH/NHLBI: Jared P. Reis

University of Minnesota: Pamela J. Schreiner

University of Oklahoma Health Sciences Center: Ying Zhang

San Diego State University: Gregory A. Talavera

University of Illinois at Chicago: Martha L. Daviglus

Funding: R21HL121580 and R00HL098458