Dr Bruce Campbell MBBS BMedSc PhD FRACP

EXTEND-IA - Endovascular Therapy After Intravenous t-PA Versus t-PA Alone For Ischemic Stroke Using CT Perfusion Imaging Selection

FINANCIAL DISCLOSURE:
Supported by grants from the Australian Government National Health and Medical Research Council (1043242, 1035688), Royal Australasian College of Physicians, Royal Melbourne Hospital Foundation, National Heart Foundation of Australia.

Solitaire FR device and trial infrastructure were supported by an unrestricted grant from Covidien who had no role in study design, conduct or analysis.

UNLABELED/UNAPPROVED USES DISCLOSURE:
none
EXTEND-IA
Extending the time for Thrombolysis in Emergency Neurological Deficits – Intra-Arterial

A randomized controlled trial of endovascular thrombectomy after standard dose intravenous t-PA within 4.5 hours of stroke onset utilizing dual target imaging selection

Bruce Campbell
Co-PI and Medical Coordinator

Peter Mitchell
Co-PI and Head of Neurointervention

Stephen Davis and Geoffrey Donnan
Co-chairs

Acknowledging support from:
Australian Government
National Health and Medical Research Council

Solitaire FR™ device supplied free of charge by

ClinicalTrials.gov NCT01492725
Rationale

• In 2011 (before IMS-3, SYNTHESIS, MR-RESCUE neutral)
 – Futile recanalization noted in single arm studies (need better selection)
 – Major improvement in procedural success observed in patients ineligible for IMS-3 treated with stentriever versus our patients eligible for IMS-3

• Aimed to select patients with best chance of response to reperfusion - “dual target”
 – proven major vessel occlusion and
 – salvageable tissue downstream with ischemic core <70mL (CT perfusion)

• Treat as fast as possible
 (no waiting to assess “tPA failure”)

• Use the most effective device (stentriever)
RAPID for CT and MRI

Fast, standardized, fully automated, quantitative, thresholded mismatch

CT relCBF / Diffusion MRI

RAPID ischemic core segmentation
CT relCBF <30%

Tmax

RAPID Tmax > 6 sec segmentation

Ischemic core: 6mL Perfusion lesion: 58mL
Mismatch ratio = 9.7 Absolute mismatch = 52mL
→ Randomize patient

Ischemic core: 7mL Perfusion lesion: 55mL
Mismatch ratio = 7.6 Absolute mismatch = 48mL
→ Randomize patient

Straka et al JMRI 2010
TRIAL DESIGN - PROBE design, planned 100 patients

Patients eligible for tPA <4.5hr
No upper age limit, No NIHSS limits,
Premorbid mRS 0-1

Is there ICA/M1/M2 occlusion
+ mismatch (ratio>1.2, absolute>10mL) with ischemic core <70mL?

Randomise 50:50
(web-based)

IV tPA only
0.9mg/kg IV tPA + Solitaire FR clot retrieval
- start asap (<6hr)

24hr MRI reperfusion*
(recan/growth/ICH)
24hr NIHSS

3 day NIHSS*

90 day NIHSS & mRS

Blinded outcomes

*co-primary outcome
70mL ischemic core

Ischemic core volume: 73mL Perfusion (Tmax>6s) lesion: 88mL
EXTEND-IA Recruitment

14 centres in Australia and New Zealand

No. Participants Randomised - Expected
No. Participants Randomised - Actual

MR-CLEAN results
DSMB halted EXTEND-IA recruitment (Haybittle-Peto boundary for efficacy)

Planned n=100
Generalizability

- In largest center 21 randomized + 7 with occlusion and clinical eligibility excluded for large core i.e. ~25% (95%CI 11-45%) excluded by CTP
CONSORT trial profile

Randomized (n=70)

Alteplase + Endovascular (n=35)
- Did not receive Angiogram (n=2)
 - 1 – major improvement (temporary)
 - 1 – major deterioration (unrecognized 2nd embolism)
- Received angiogram (n=33)
 - 4 – already recanalized by tPA
 - 1 – ICA stent sufficient to restore flow
 - 1 – wire perforation pre-deployment

Alteplase only (n=35)
- Received tPA only (n=35)

All analyses = intention to treat
Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IV tPA only</th>
<th>IV tPA + endovascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Age – yr: Mean (SD)</td>
<td>70.2 (11.8)</td>
<td>68.6 (12.3)</td>
</tr>
<tr>
<td>Male sex – no. (%)</td>
<td>17 (48.6%)</td>
<td>17 (48.6%)</td>
</tr>
<tr>
<td>NIHSS score: Median (IQR)</td>
<td>13 (9-19)</td>
<td>17 (13-20)</td>
</tr>
<tr>
<td>Onset to tPA – min Median (IQR)</td>
<td>145 (105-180)</td>
<td>127 (93-162)</td>
</tr>
<tr>
<td>Door-to-needle – min Median (IQR)</td>
<td>46 (35-70)</td>
<td>43 (19-61)</td>
</tr>
<tr>
<td>tPA to randomization – min Median (IQR)</td>
<td>36 (18-55)</td>
<td>29 (23-46)</td>
</tr>
</tbody>
</table>
Initial imaging

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IV tPA only</th>
<th>IV tPA + endovascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site of vessel occlusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICA</td>
<td>11 (31%)</td>
<td>11 (31%)</td>
</tr>
<tr>
<td>MCA-M1</td>
<td>18 (51%)</td>
<td>20 (57%)</td>
</tr>
<tr>
<td>MCA-M2</td>
<td>6 (17%)</td>
<td>4 (11%)</td>
</tr>
<tr>
<td>Baseline Ischemic core – mL</td>
<td>19.6, 18 (4-29)</td>
<td>18.9, 12.3 (4-32)</td>
</tr>
<tr>
<td>Mean, Median (IQR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline Perfusion lesion – mL</td>
<td>116, 115 (72-158)</td>
<td>105, 106 (76-137)</td>
</tr>
<tr>
<td>Mean, Median (IQR)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Procedural Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>median, (IQR)</th>
<th>IV tPA + endovascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONSET to groin puncture – min</td>
<td>210 (166-251)</td>
<td></td>
</tr>
<tr>
<td>CT to groin puncture – min</td>
<td>93 (71-138)</td>
<td></td>
</tr>
<tr>
<td>Groin puncture to TICI 2b/3 or completion</td>
<td>43 (24-53)</td>
<td></td>
</tr>
<tr>
<td>ONSET to mTICI 2b/3 or completion</td>
<td>248 (204-277)</td>
<td></td>
</tr>
</tbody>
</table>
Procedural Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IV tPA + endovascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final mTICI (core lab adjudicated)</td>
<td>mTICI 2b/3 25/29 (86%)</td>
</tr>
<tr>
<td></td>
<td>mTICI 3 14/29 (48%)</td>
</tr>
</tbody>
</table>
Co-primary outcome
Reperfusion at 24hr

(Intention to treat)

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>% Reperfusion at 24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPA only</td>
<td>median 37%</td>
</tr>
<tr>
<td>tPA + endovascular</td>
<td>100%</td>
</tr>
</tbody>
</table>

p<0.0001

median 37% vs 100%
Early neurological recovery
Reduction of ≥8 NIHSS points or reaching 0-1 by day 3

<table>
<thead>
<tr>
<th>Patients (%)</th>
<th>tPA only</th>
<th>tPA + endovascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=0.002</td>
<td>37%</td>
<td>80%</td>
</tr>
</tbody>
</table>

RMH Comprehensive Stroke Centre
Day 90 mRS

Combined Intravenous t-PA and Endovascular Therapy

Ordinal p=0.006 (unadj), p=0.02 (adj)
NNT 3 for ≥1 point better on mRS

Intravenous t-PA alone

mRS 0-2 p=0.01
71% vs 40% - NNT 3.2 for independence

mRS 0-1 p=0.09

RMH Comprehensive Stroke Centre
Infarct volume & growth

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IV tPA only</th>
<th>IV tPA + endovascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Ischemic core</td>
<td>18 (4-29)</td>
<td>12.3 (4-32)</td>
</tr>
<tr>
<td>24hr Ischemic core</td>
<td>49 (17-82)</td>
<td>18 (12-52)</td>
</tr>
<tr>
<td>Infarct Growth</td>
<td>35 (6-73)</td>
<td>11 (0-24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p=0.007 (adj)</td>
</tr>
</tbody>
</table>
Adverse events

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>IV tPA only</th>
<th>IV tPA + endovascular</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths</td>
<td>7/35 (20%)</td>
<td>3/35 (9%)</td>
<td>0.18</td>
</tr>
<tr>
<td>SICH*</td>
<td>2/35 (6%)</td>
<td>0/35 (0%)</td>
<td>0.49</td>
</tr>
<tr>
<td>PH §</td>
<td>3/35 (9%)</td>
<td>4/35 (11%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Wire perforation</td>
<td>-</td>
<td>1/35 (2.9%)</td>
<td>-</td>
</tr>
<tr>
<td>Emboli</td>
<td>-</td>
<td>2/35 (5.7%)</td>
<td>-</td>
</tr>
</tbody>
</table>

* pre-specified SITS definition = PH2 + ≥4 point increase NIHSS

§ PH = parenchymal hematoma
Limitations

• Sample size 70 - unable to interrogate subgroups (planned individual patient meta-analysis)

• Cannot exclude some benefit of endovascular therapy in patients excluded from this trial on the basis of large ischemic core/no mismatch.

• Purely volume-based criteria do not account for the location of the core, which is also relevant to clinical outcome.

• Early termination of the trial does create potential for overestimation of the effect size.
Conclusions

• **early** mechanical stent-thrombectomy after tPA using Solitaire FR led to:
 – Faster and more complete reperfusion

• In this population selected for vessel occlusion and salvageable tissue this translated to:
 – Improved early neurological recovery
 – Improved functional outcome at 3 months
 – No safety concerns
Implications

• tPA + mechanical stent-thrombectomy should be the new standard of care
• Systems re-organization and transfer protocols
• Details of selection paradigm remain a key discussion
 – EXTEND-IA indicates a population with high probability of major clinical response but others may derive some benefit – requires further study
Acknowledgements

• Recruiting Sites

Royal Melbourne Hospital (21) B.C.V. Campbell, P.J. Mitchell, S.M. Davis, B. Yan, R.J. Dowling, N. Yassi, T.J. Oxley, T.Y. Wu, G. Silver, A. McDonald, R. McCoy; Royal Adelaide Hospital (12) T.J. Kleinig, R. Scroop; Austin Hospital (10) H.M. Dewey, M. Simpson, M. Brooks, B. Coulton; Royal North Shore Hospital (6) M. Krause, T.J. Harrington, B. Steinfurt, K. Faulder, M. Priglinger, S. Day; Monash Medical Centre (4) T. Phan, W. Chong, M. Holt, R.V. Chandra, H. Ma, D. Young; Western Hospital (4) T. Wijeratne, H. Tu, E. Mackay; Box Hill Hospital (3) C.F. Bladin, P.S. Loh, A. Gilligan, Z. Ross, S. Coote, T Frost; John Hunter Hospital (3) M.W. Parsons, F. Miteff, C.R. Levi, T. Ang, N. Spratt; Gold Coast University Hospital (3) M. Badve, H. Rice, L. de Villiers. New Zealand: Auckland City Hospital (4) P.A. Barber, B. McGuinness, A. Hope, M. Moriarty.

• Neuroscience Trials Australia – E Cowley, R McCoy
• CSIRO (eCRF) – S McBride, K Harrap, C Stanbridge
• Stanford Stroke Centre (RAPID) – G Albers, R Bammer
• Patients and families
Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection
