Gut Microflora Influences Pathology in the Kawasaki Disease (KD) Vasculitis Mouse Model

Daiko Wakita¹, Yosuke Kurashima², Yoshihiro Takasato², Youngho Lee¹, Kenichi Shimada¹, Shuang Chen¹, Timothy R. Crother¹, Michael C. Fishbein³, Thomas J.A. Lehman⁴, Hiroshi Kiyono² and Moshe Arditi¹

¹Pediatrics and Infectious Diseases, Cedars-Sinai Medical Center, Los Angeles, CA.
²Division of Mucosal Immunology, The University of Tokyo, Tokyo, Japan.
³Department of Medicine Pathology and Laboratory Medicine, University of Los Angeles, Los Angeles, CA.
⁴Pediatric Rheumatology, Hospital for Special Surgery, New York, NY.
Daiko Wakita, PhD

Gut Microflora Influences Pathology in the Kawasaki Disease Vasculitis Mouse Model

FINANCIAL DISCLOSURE:
No relevant financial relationship exists
Intestinal Microbiota and Disease

Health

- Immune system
- Metabolism

Disease

- IBD (inflammatory Bowel disease)
- Allergy
- Arteriosclerosis
Changes in intestine of KD patients

A wide variety of bacteria was isolated from jejunal biopsies in the acute phase of KD as compared with those from control children. KD patients had a significantly lower incidence of Lactobacillus than disease control patients.

Macrophage/dendritic cells and activated CD4⁺ T cells were significantly increased in the lamina propria of KD patients in the acute phase.

Characteristic profile of intestinal microflora in Kawasaki disease

S Takeshita, I Kobayashi, Y Kawamura, T Tokutomi and I Sekine

Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan; Chemotherapy Division, Mitsubishi-Kagaku Bio-Clinical Laboratories, Tokyo, Japan

KD patients had a significantly lower incidence of Lactobacillus than disease control patients
Coronary arteritis in mice following the systemic injection of group B Lactobacillus casei cell walls in aqueous suspension.

Coronary Arteritis

70-80% C57BL/6

Lactobacillus casei cell wall extract (LCWE)

Day 3
Mononuclear cells in adventitia

Day 14
Focal, asymmetric invasion of arterial wall, Lymphocytic

Day 28
Circumferential lesion with marked proliferation of intima/media

Day 56
Fibrous tissue, marked narrowing

Control

LCWE
LCWE-induced KD mouse model develops abdominal aorta aneurysms

Control

LCWE

Maximal aorta diameter (mm)

** P<0.01

Presented in The 32nd Kawasaki Disease Meeting (Kanto-area), Japan Red Cross Hospital in Tokyo, Dec 7th 2013
NOD2\(^{-/-}\) and Dectin-1\(^{-/-}\) mice are protected from LCWE-induced KD vasculitis

Bacteria

Peptidoglycan

Fungi

β-1,3-glucan

NOD2

Dectin-1

Inflammatory cytokines

<table>
<thead>
<tr>
<th>Heart vessels</th>
<th>Incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0/12</td>
</tr>
<tr>
<td>NOD2(^{-/-})</td>
<td>2/7</td>
</tr>
<tr>
<td>Dectin-1(^{-/-})</td>
<td>11/12</td>
</tr>
</tbody>
</table>
Germ-Free mice develop markedly decreased cardiovascular lesions in KD mouse model

SPF (n=13)
Germ Free (n=13)

Day7

Heart Abdominal Aorta

SPF GF

Heart vessels

Inflammation score

P<0.01

P<0.05

Incidence (%)

10/13
4/13

(Coronal lesions)
Germ-Free mice develop markedly decreased cardiovascular lesions in KD mouse model (abdominal aorta lesions)
Depletion of commensal fungi and bacteria with fluconazole and antibiotic treatment

Anti-fungal drug (Fluconazole; Fluc) and/or Antibiotics cocktail (Abx) (Neomycin, Ampicillin, Vancomycin, Metronidazole)

Fungi amount

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Fluc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungal ITS1-2 DNA (Relative to total DNA)</td>
<td>1.00</td>
<td>0.50</td>
</tr>
</tbody>
</table>

* P<0.05

Bacteria amount

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Abx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial 16S rDNA (Relative to total DNA)</td>
<td>5.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

*** P<0.001
Fluconazole and/or antibiotics treatment decreased cardiovascular lesions in KD mouse model.
Fluconazole and/or antibiotics treatment decreased cardiovascular lesions in KD mouse model.
Intestinal permeability and disease development

Gut Microflora

Bacteria

Fungi

Products

Metabolites

Intestinal barrier dysfunction

Translocation of intestinal microflora

Inflammatory diseases

Host
LCWE injection increases intestinal permeability

LCWE (i.p.)

FITC-Dextran (p.o.)

Serum

* P<0.05

FITC-Dextran (ug/ml)

Control 8 hr 20 hr

Hours after LCWE injection
Conclusions

- LCWE-induced cardiovasculitis was decreased in germ free mice
- Depletion of gut commensal fungi and bacteria diminished KD vasculitis
- LCWE injection increased intestinal permeability

? Role of microbiome in KD pathogenesis, new diagnostic/therapeutic strategies
Acknowledgement

Cedars-Sinai Medical center Pediatrics

Moshe Arditi Lab
Young Ho Lee
Shuang Chen
Timothy R. Crother
Kenichi Shimada
Wenxuan Zhang
Ganghua Huang

The University of Tokyo
Hiroshi Kiyono
Yosuke Kurashima
Yoshihiro Takasato

University of California
Los Angeles

Micheal Fishbein

Hospital for special surgery, New York Cornell Medical College

Thomas Lehman

Grant supports
NIH AI072726 and NIH AI1070162 to Dr Arditi
AHA fellowship to Dr Wakita