Defining the Role of Sex Hormones in PAH: Science and Career Development

Eric D. Austin, MD MSCI
Assistant Professor of Pediatrics
Director, Vanderbilt Pediatric PH & Pulmonary Vascular Disease Program
Vanderbilt University School of Medicine
eric.austin@vanderbilt.edu
No relationships to disclose

- Personal financial relationships with commercial interests relevant to medicine: none
- Personal financial support from a non-commercial source relevant to medicine: none
- Personal relationships with tobacco industry entities: none
- Off-Label Disclosure: not needed
- I am still on this career development journey
Successful Physician-Scientist Dev’t

• Be **Proactive** in carving out your career path
• *Seek and Cultivate* Mentors
• Establish an area of **Expertise**
• Medical research is a **Team Sport**
• Aggressively pursue **Funding Opportunities**
• Navigate the diverse missions of academic medicine with **Self-Discipline**

Proactive & Mentorship
Focus on PH, specifically PAH

1. PULMONARY ARTERIAL HYPERTENSION (PAH)
 - Idiopathic PAH
 - Heritable PAH (Family and/or gene mutation)
 - Drug- and toxin-induced
 - Associated with:
 - Connective tissue diseases
 - Congenital heart diseases
 - HIV
 - Portal hypertension
 - Schistosomiasis

1'. PULMONARY VENO-OCCULSIVE DZ (PVOD) AND/OR PULMONARY CAPILLARY HEMANGIOMATOSIS (PCH)

1''. PPHN

2. PH DUE TO LEFT HEART DISEASE
 - Systolic dysfunction
 - Diastolic dysfunction
 - Valvular disease

3. PH DUE TO LUNG DISEASES AND/OR HYPOXIA
 - Bronchopulmonary dysplasia (BPD), COPD
 - Interstitial Lung Disease (ILD)
 - Other lung dz’s w/ mixed restrictive/obstructive defects
 - Sleep-disordered breathing
 - Alveolar hypoventilation disorders
 - Chronic exposure to high altitude
 - Developmental lung abnormalities

4. CHRONIC THROMBOEMBOLIC PH (CTEPH)

5. PH UNCLEAR MULTIFACTORIAL MECHANISMS
 - Hematologic d/o’s: hemolysis, myeloproliferative, splenectomy
 - Systemic d/o’s: sarcoidosis, LCH, LAM, NF, vasculitis
 - Metabolic d/o’s: glycogens storage dz, Gaucher’s
 - Thyroid
 - Others: tumurol obstruction, fibrosing mediastinitis, CR

Simonneau et al, JACC 2013
Established Risk Factors for PAH

- Genetic susceptibility
 - BMPR2 gene mutation (TGFβ genes, CAV1, KCNK3)
- Female
- Connective tissue disease
- Hereditary hemorrhagic telangiectasia (HHT)
 - ALK1 & ENG gene mutations
- Portal Hypertension
- Drug & toxin exposures
 - aminorex, fenfluramine, dexfenfluramine
BMPR2 HPAH:
reduced penetrance and variable expressivity

A Large HPAH Family: 36 Confirmed PAH
29 Female
7 Male

Updated Summer 2011 (Pulm Cir)—initial pub by Loyd, Primm, Newman *Am Rev Resp Diseases* 1984
BMPR2 HPAH: penetrance higher females

A Large HPAH Family: 36 Confirmed PAH
29 Female
7 Male

K12 Funding (2006): Genetic Modifiers of PAH

Updated Summer 2011 (Pulm Circ)—initial pub by Loyd, Primm, Newman Am Rev Resp Diseases 1984
Female predominance suggests a role for Sex Hormones

- Penetrance of *BMPR2* mutations not equal for females (higher) and males
- Most forms of PAH are female predominant
- Gene expression data suggestive that Sex Hormone Metabolism is different in PAH patients
 - *CYP1B1* expression
- Conflicting data about estrogens and PH in animal models
- Survival
Pursuit: Estrogens

ERα ERβ → GPR30 → Kinases → Rapid Nongenomic Effects
1. Vasodilation
 - increase eNOS activity
 - increase PGI2
2. Promote angiogenesis
3. Modify injury response

Genomic Effects
Alter gene expression
- pro-proliferative
- pro-migratory

SERMs modify these effects, as do certain Estrogen Metabolites

Sex Hormone Metabolism

- Estrone (E₁)
 - 17β-HSD1
 - CYP1B1, CYP1A1
 - COMT
 - 2-Hydroxyestrogens (2-OHE₁/₂)
 - 2-Methoxyestrogens (2-MeOE₁/₂)
 - COMT
 - 4-Hydroxyestrogens (4-OHE₁/₂)
 - 4-Methoxyestrogens (4-MeOE₁/₂)

- 17β-Estradiol (Estradiol, E₂)
 - CYP1B1, CYP1A1
 - CYP3A4, CYP1A1
 - 16α-Hydroxyestrone (16α-OHE₁)
 - 17β-HSD

- Testosterone
 - CYP19A1 (Aromatase)

- Estriol (E₃)
 - COMT
 - 17β-HSD1

CYP1B1, CYP1A2, COMT, 17β-HSD, Aromatase
Sex Hormone Metabolism

- Estrone (E₁)
 - 17β-HSD1
 - CYP1B1, CYP1A1
 - COMT

- 17β-Estradiol (Estradiol, E₂)
 - CYP1B1
 - CYP1A2
 - CYP1A1

- Testosterone
 - CYP19A1 (Aromatase)

- 2-Hydroxyestrogens (2-OHE₁/₂)
 - 2-Methoxyestrogens (2-MeOE₁/₂)

- 4-Hydroxyestrogens (4-OHE₁/₂)
 - 4-Methoxyestrogens (4-MeOE₁/₂)

- 16α-Hydroxyestrone (16α -OHE₁)
 - Estriol (E₃)

- 2-, 4- Estrogens Antagonize ER
 - ‘anti-proliferative’
 - ‘apoptotic’

- 16-Estrogens ER Agonists
 - ‘pro-proliferative’
 - ‘anti-apoptotic’
CYP1B1 N453S : N/N genotype associated with lower CYP1B1 activity

<table>
<thead>
<tr>
<th>Females</th>
<th>BMPR2-PAH n (%)</th>
<th>BMPR2-Healthy n (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/N</td>
<td>46 (74%)</td>
<td>10 (42%)</td>
<td>0.005</td>
</tr>
<tr>
<td>N/S or S/S</td>
<td>16 (26%)</td>
<td>14 (58%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Males</th>
<th>BMPR2-PAH n (%)</th>
<th>BMPR2-Healthy n (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/N</td>
<td>18 (60%)</td>
<td>17 (71%)</td>
<td>0.407</td>
</tr>
<tr>
<td>N/S or S/S</td>
<td>12 (40%)</td>
<td>7 (29%)</td>
<td></td>
</tr>
</tbody>
</table>

Females with N/N genotype:
Unadjusted OR = 4.1

* Hannah, *Cancer Res* 2000
Austin, *Eur Resp J* 2009
Sex Hormone Metabolism

- **Estrone (E₁)**
- **Beta-Estradiol (E₂)**
- **Testosterone**

Enzymes Involved
- CYP1B1
- CYP1A2
- COMT
- 17β-HSD1
- 17β-HSD
- CYP19A1 (Aromatase)

Metabolites
- Estrone (E₁)
- Beta-Estradiol (E₂)
- Testosterone
- Estriol (E₃)

2-Hydroxyestrogens (2-OHE₁/₂)
- Estrone (E₁)
- Beta-Estradiol (E₂)

4-Hydroxyestrogens (4-OHE₁/₂)
- Estrone (E₁)
- Beta-Estradiol (E₂)

2-Methoxyestrogens (2-MeOE₁/₂)
- Estrone (E₁)
- Estriol (E₃)

4-Methoxyestrogens (4-MeOE₁/₂)
- Estrone (E₁)
- Beta-Estradiol (E₂)

Effects
- 2-, 4- Estrogens Antagonize ER 'anti-proliferative' 'apoptotic'
- 16-Estrogens ER Agonists 'pro-proliferative' 'anti-apoptotic'

Pathways

Make more 16-estrogens
Sex Hormone Metabolism

Global Hypothesis:
A highly estrogenic milieu promotes PAH

- Epidemiologic exposures
- Hormone levels
- In vitro and animal model studies

2-Hydroxyestrogens (2-OHE₁/₂)

16-α-Hydroxyestrone (16α-OHE₁)

2-Methoxyestrogens

K23, CTSA, foundation, & P01 (Loyd) Funding:
Sex Hormones in PAH

2-, 4- Estrogens Antagonize ER
‘anti-proliferative’ ‘apoptotic’

2-Methoxyestrogens

Testosterone

CYP1B1

CYP1A2

COMT

17-β-HSD

17-β-HSD1

Aromatase (CYP19A1)

[Image]

Sex Hormone Metabolism

2-, 4- Estrogens Antagonize ER
‘anti-proliferative’ ‘apoptotic’

2-Methoxyestrogens

Testosterone

CYP1B1

CYP1A2

COMT

17-β-HSD

17-β-HSD1

Aromatase (CYP19A1)
Ratio of ‘2-estrogens’ / ‘16-estrogens’: Lower in PAH Patients

Female Data Shown, but similar in males and IPAH cases ($P = 0.05$)
Team Sport: James West’s Bmpr2R899x transgenic murine model:
2ME versus 16αOHE

- Male mice
 - 1.25 mg/hr x 4 weeks
 1. vehicle
 2. 2ME
 3. 16αOHE
 4. 2ME + 16αOHE

Hypothesis: 2-estrogens (2ME) protective while 16-estrogens (16αOHE) detrimental

16αOHE increases penetrance

A

RVSP (mmHg)

B

PVR (dyn*s/cm^5)

RVSP mmHg

PVR dyn*s/cm^5

Conclusions

• **Proactive & Mentored** pursuit of a pressing question in the PAH field w/ **Team** approach

• Sex Hormone contributes to PAH
 – Skew toward ‘16-estrogens’ in humans

• ‘16-estrogens’ amplify Bmpr2 murine model penetrance

• Estrogen antagonism may be protective
 – Long term effects unknown, incl. RV function

• Precise mechanisms active area investigation
 – Pulmonary vasculature
 – RV

• R01 application exploring the interplay between Sex Hormones, Cellular Metabolic Defects, and PAH
Many thanks to many people

James E. Loyd, MD
• Lisa Wheeler—Research Coordinator
• Shannon Cordull, RN
• DeWayne Ames, LPN
• Errine Garnett

Austin Lab
• Lora Hedges, James Rand

Rizwan Hamid, MD PhD

John A. Phillips, III, MD PhD
John H. Newman, MD
Joy D. Cogan, PhD

James West, MD
Xinping Chen, PhD
Josh Fessel, MD PhD

Anna R. Hemnes, MD
Ivan M. Robbins, MD
Evan Brittain, MD
Emma Larkin, PhD
Fritz Parl, MD PhD
Sheila Dawling, PhD

Columbia University
-Wendy Chung, MD PhD

Vanderbilt Dept of Pediatrics
NIH K23 HL098743
NIH P01 HL 72058 (Loyd)
Entelligence Award Program
Turner-Hazinski Scholar Program, VU
VU Institute Clin & Translational Res
ATS-PHA Junior Investigator Award