Presenter Disclosure Information

Pimonrat Ketsawatsomkron, Ph.D.

Interference with Smooth Muscle Peroxisome Proliferator-Activated Receptor-gamma (PPAR\(\gamma\)) Exacerbates Hypertension and Vascular Dysfunction: Role of TIMP-4

Financial Disclosure:
No relationships to disclose

Unlabeled / Unapproved Uses Disclosure:
No unlabeled / unapproved uses to disclose
Interference with Smooth Muscle Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) Exacerbates Hypertension and Vascular Dysfunction: Role of TIMP-4

Pimonrat Ketsawatsomkron, Deborah R. Davis, Justin L. Grobe, Henry L. Keen and Curt D. Sigmund.

Department of Pharmacology
Roy J. and Lucille A. Carver College of Medicine,
University of Iowa, Iowa City, IA 52242
PPARγ

- Ligand-activated transcription factor
- Master regulator of adipogenesis, lipid metabolism and glucose homeostasis
- Unidentified endogenous ligand
- Synthetic ligand-Thiazolidinediones (TZD)

PPARγ and Cardiovascular System

1. PPARγ agonists: TZD

- Insulin sensitivity
- Glucose and fatty acid metabolism
- Atherosclerosis
- Blood pressure

Side effects: weight gain, sodium and fluid retention, heart failure and myocardial infarction
Patients with PPARγ mutation develop early-onset severe hypertension with insulin resistance, type 2 diabetes and lipodystrophy

- Ligand Binding Domain: P467L, V290M, L339X
- DNA Binding Domain: C114R, C131Y, C162W, R165T

Auclair M, et al. ATVB 2013
Development of S-P467L Model

- Impaired baroreflex *(Borges GR, et al. Hypertension 2014)*
- Severe aortic dysfunction that is dependent on an augmented RhoA/Rho kinase signaling *(Pelham CJ, et al. Cell Metabolism 2012)*
Hypothesis

Interference of smooth muscle PPAR$_\gamma$ exacerbates DOCA-salt-induced hypertension and resistance vessel dysfunction
Experimental Design

Male S-P467L mice and NT littermate controls

- subcutaneous pellet of 50 mg DOCA
- 0.15 M NaCl solution in addition to regular chow and water

- Blood pressure by radiotelemetry
- Mesenteric arterial function by pressure myograph
- Morphometry studies with aorta and 2nd order of mesenteric artery

Gene Expression Profiling: Microarray obtained from aorta and mesenteric arteries from untreated mice

Cell Culture Studies: Rat aortic smooth muscle cells
Exaggerated Hypertensive Response to DOCA-salt in S-P467L

* p<0.05 vs. NT Two-way repeated-measures ANOVA interaction p = 0.039

NT (n=16 for baseline; n=13 for DOCA-salt)
● S-P467L (n=13 for baseline; n=11 for DOCA-salt)
Impaired ACh-induced Relaxation in S-P467L Mesenteric Arteries after DOCA-salt

○ NT (n=5 for baseline; n=7 for DOCA-salt)
● S-P467L (n=6 for baseline; n=9 for DOCA-salt)

* p<0.05 vs. NT
Augmented Vascular Remodeling in S-P467L after DOCA-salt

- Morphometry of mesenteric artery at P75 mmHg after DOCA-salt

- No difference at baseline

* p<0.05 vs. NT; NT=12, S-P467L=8
Augmented Vascular Remodeling in S-P467L after DOCA-salt

- Morphometry of aorta stained with Verhoeff–Van Gieson

* p<0.05 vs. NT; NT=6, S-P467L=6

- No difference at baseline
Potential Mechanisms

Unbiased Approach Criteria:

1. Positive expression in the blood vessel

2. Significant change in S-P467L artery

3. Change in both aorta and mesenteric artery microarray data

4. PPARγ binding sites near by

(Keen HL)
Potential Mechanisms

- Gene expression profiling of aorta and mesenteric arteries with Affymetrix microarrays

TIMP-4 = Tissue Inhibitor of Metalloproteinases-4

PPAR\(\gamma\) Binding (ChIP-Seq)

TIMP-4 = Tissue Inhibitor of Metalloproteinases-4
What is TIMP-4?

- Endogenous inhibitor of matrix metalloproteinases (MMPs), providing a tight control of extracellular matrix degradation

Specifically Reduced TIMP-4 Expression in S-P467L Mesenteric Arteries after DOCA-salt

n=6, * p<0.05 vs. NT, ** p<0.05 vs. NT+DOCA
Increased MMP-9 Expression in S-P467L Mesenteric Arteries after DOCA-salt

DOCA-salt

MMP-2

Fold change from NT

NT S-P467L

MMP-9

Fold change from NT

NT S-P467L

n=5, * p<0.05 vs. NT
Interference of PPARγ Activity Suppressed TIMP-4 Expression in Smooth Muscle Cells

(n=3)
(n=4)
Increased total MMP Activity in Smooth Muscle Cells by PPARγ Inhibitor

In situ zymography

Vehicle

GW9662

n=4, * p<0.05 vs. vehicle

MMP activity normalized to vehicle-treated group
Conclusions

• Interference with PPARγ function in smooth muscle resulted in exacerbated DOCA-salt-induced hypertension and vascular dysfunction.

• Augmented vascular remodeling in S-P467L mice after DOCA-salt treatment was associated with a specific down-regulation of TIMP-4.

• Smooth muscle TIMP-4 expression could be at least, in part, regulated by PPARγ.

• GW9662, a PPARγ antagonist, led to an increased MMP activity.
Working Model

Vascular Remodeling
Exacerbated Hypertension

PPARγ
RXR

TIMP-4

Active MMPs

MMP/TIMP

DN-PPARγ

PPRE

TIMP-4
Clinical Relevance and Perspective

- TZDs are potent and effective insulin sensitizers previously used frequently to treat patients with type 2 diabetes.

- Due to serious potential side effects (i.e. congestive heart failure and myocardial infarction) in select patients, the use of TZDs has been restricted.

- Identifying PPARγ targets in the vasculature will help explain the adverse events of TZDs and design a new class of therapies that regulates PPARγ function more selectively.
Acknowledgements

The Sigmund Laboratory

The Grobe Laboratory
 • Nicole Pearson

The Faraci Laboratory
 • Dr. Michael De Silva

The Iowa Institute of Human Genetics