Liliya M. Yamaleyeva, M.D., M.S.

Uterine Artery Dysfunction in ACE2 Deficient Mice is Associated with Placental Hypoxia and Reduced Umbilical Flow

DISCLOSURE INFORMATION:
No relationships to disclose.
Uterine Artery Dysfunction in ACE2 Deficient Mice is Associated with Placental Hypoxia and Reduced Umbilical Flow

Liliya M. Yamaleyeva, Victor M. Pulgar, Sarah H. Lindsey, Jasmina Varagic, Carolynne M. McGee, Larissa Yamane, K. Bridget Brosnihan

The Hypertension and Vascular Research Center
Wake Forest University School of Medicine
Winston-Salem, North Carolina, USA
Fetal Intrauterine Growth Restriction

- The failure of a fetus to reach his/her biological growth potential

- Leading cause of neonatal mortality

- IUGR is linked to a high risk for future perinatal morbidities and physical and/or mental abnormalities in later life including higher incidence of adult diseases (type 2 diabetes, hypertension and cardiovascular disease)
Uteroplacental Factors Leading to Intrauterine Fetal growth Restriction

Maternal portion of the placenta: uterine artery reactivity and hemodynamics

Fetomaternal interface: trophoblast invasion, placental vascular development and oxygenation

Fetal part: umbilical artery hemodynamics
Renin-Angiotensin System and Normal Pregnancy

Angiotensinogen

\[\text{Renin} \rightarrow \text{ACE2} \]

\[\text{Ang I} \rightarrow \text{Ang-(1-9)} \]

\[\text{Ang II} \rightarrow \text{Ang-(1-7)} \]

\[\text{AT}_1\text{R} \quad \text{AT}_2\text{R} \quad \text{Ang}_1\text{-7/MAS} \]

Vasoconstriction
Inflammation
Proliferation

Vasodilation
Anti-Inflammation
Anti-Proliferation
The Distribution of ACE2 in Placenta Suggests Its Paracrine Influence on Uteroplacental Physiology

G. Valdes et al., Placenta, 2006

syncytiotrophoblast (arrows), fetal endothelium (dashed arrows); normal term pregnancy

G. Valdes et al., Placenta, 2006
Pregnant ACE2 Knockout (ACE2 KO) Mouse – a Model of IUGR

- C57Bl/6 background (Gurley and Coffman, 2006)
- no cardiac abnormalities
- modest increase in blood pressure

Late Pregnancy:
- Reduced fetal growth and maternal weight gain
- Circulation: reduced Ang-(1-7)
- Placenta: increased Ang II

Bharadwaj MS et al., Hypertension, 2011
Hypothesis

ACE2 deficiency induces uteroplacental dysfunction as early as mid-gestation before the major growth of fetus occurs.
Lower Maternal and Fetal Weights, Fetal-to-Placental Weight Ratio in ACE2 KO vs. C57Bl/6 Mice at Mid-Gestation

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>C57Bl/6 (n=5)</th>
<th>ACE2 KO (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother’s BW(g)/tibia length (cm)</td>
<td>17.9±0.20</td>
<td>16.42±0.37*</td>
</tr>
<tr>
<td>(Mother’s BW – total pup BW), g/tibia length (cm)</td>
<td>16.63±0.30</td>
<td>15.30±0.38*</td>
</tr>
<tr>
<td>Pup BW (g)/tibia length (cm)</td>
<td>0.15±0.01</td>
<td>0.11±0.01*</td>
</tr>
<tr>
<td>Pup BW/placental weight ratio</td>
<td>3.15±0.28</td>
<td>2.44±0.11*</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>85.1±1.90</td>
<td>102.3±5.10*</td>
</tr>
<tr>
<td>Proteinuria (mg of protein-to-g of mother’s BW)</td>
<td>1.02±0.09</td>
<td>1.03±0.42</td>
</tr>
<tr>
<td>Maternal serum creatinine (mg/dl)</td>
<td>0.29±0.02</td>
<td>0.34±0.03</td>
</tr>
</tbody>
</table>
No Differences in Vasodilatory Response to Acetylcholine and eNOS Immunostaining in the Uterine Arteries of ACE2 KO and C57Bl/6 Mice at Mid-Gestation
Higher Contraction to KCl and Phenylephrine in the Uterine Arteries of ACE2 KO vs. C57Bl/6 Mice at Mid-Gestation
Increased Sensitivity to Ang II in Uterine Arteries of ACE2 KO and C57Bl/6 Mice at Mid-Gestation

pD2:
ACE2 KO - 8.64±0.04
C57Bl/6 - 8.5±0.03
Differential Expression of AT_{1R} and AT_{2R} in the Uterine Arteries of ACE2 KO and C57Bl/6 Mice at Mid-Gestational
Uterine Artery Resistance is Similar in ACE2 KO and C57Bl/6 Mice

Uterine Artery

- **Peak Systolic Velocity**
 - C57Bl/6: [Graph]
 - ACE2 KO: [Graph]
- **Min Diastolic Velocity**
 - C57Bl/6: [Graph]
 - ACE2 KO: [Graph]
- **Resistance Index**
 - C57Bl/6: [Graph]
 - ACE2 KO: [Graph]
No Difference in Trophoblast Invasion in ACE2 KO and C57Bl/6 Mice at Mid-Gestation

C57Bl/6

ACE2 KO

L, labyrinth; JZ, junctional zone; D, decidua; M, mesometrium
Higher Expression of Hypoxia Markers in the Placenta of ACE2 KO vs. C57Bl/6 Mice
Lower Umbilical Artery Velocities and Resistance in ACE2 KO vs. C57Bl/6 Mice at Mid-Gestation

Umbilical Artery Velocities and Resistance in ACE2 KO vs. C57Bl/6 Mice at Mid-Gestation

Peak Systolic Velocities

- **C57Bl/6**
- **ACE2 KO**

Min Diastolic Velocities

- **C57Bl/6**
- **ACE2 KO**

Resistance Index

- **C57Bl/6**
- **ACE2 KO**
ACE2 Deficiency Induced Factors Leading to IUGR

Maternal portion of the placenta:
Higher uterine artery reactivity to vasoconstrictors (Phe, Ang II)

Fetomaternal interface:
Placental hypoxia

Fetal part:
Lower umbilical artery velocities
Conclusions

• Since placental hypoxia is associated with increased risk for fetal growth restriction, higher expression of hypoxia markers in ACE2 deficient mice suggests a protective role of ACE2 in the utero-placental unit.

• Increased contractility of uterine artery may not be related to hypoxia, but may represent an early event that later may translate into hemodynamic changes in the uterine artery.

• Placental hypoxia and uterine artery dysfunction develop before the major growth of fetus occurs and may exacerbate the IUGR phenotype.

• Reduced umbilical flow velocity, frequently associated with restricted fetal weight gain, may be a compensatory event in response to placental hypoxia.
Future Goals and Perspectives

Future studies will establish:

• molecular mechanisms of uteroplacental dysfunction in ACE2 deficiency-induced IUGR

• therapeutic effects of ACE2 replacement/supplementation on fetal growth in pathological pregnancies.
Acknowledgements

- Victor M. Pulgar, Ph.D.
- Sarah H. Lindsey, Ph.D.
- Larissa Yamane, B.S.
- Jasmina Varagic, M.D., Ph.D.
- Carolynne McGee, B.S.
- K. Bridget Brosnihan, Ph.D.

Funding:

American Heart Association, Scientist Development Grant
NIH NHLBI 1R21HL110072-01A1