Presenter Disclosure Information

Brahmaraju Mopidevi, Ph.D.

“A Genetic Variant of Human Aldosterone Synthase Gene Causes Salt-Dependent High Blood Pressure in Transgenic Mice”

FINANCIAL DISCLOSURE:

No relevant financial relationship exists

UNLABELED/UNAPPROVED USES DISCLOSURE:

None
A Genetic Variant of Human Aldosterone Synthase Gene Causes Salt-Dependent High Blood Pressure in Transgenic Mice

Brahmaraju Mopidevi, Ph.D.
Assistant professor
Dpt. of physiology and pharmacology
The University of Toledo

This work is supported by NIH grants HL81752, HL105113, and HL09255
To
Prof. Ashok Kumar, Ph.D., FAHA
Dpt. of physiology and pharmacology
The University of Toledo
- Hypertension is a polygenic disease.

- Hypertension is a major risk factor for myocardial infarction, heart failure, stroke and renal disease.

- Hypertension results by the interplay of multiple genetic and environmental factors.

- ~45% of the inter-individual differences in blood pressure can be accounted by the genetic differences.
SNPs in the promoter region may modulate transcription of the gene.

- About 1 million SNPs have already been identified.
- How many of these SNPs are functional is not clear.

Promoter and Enhancer Regions: Quantitative Changes in the Expression of a Protein.

Coding Sequence: Functionally Altered Proteins.

Introns: Function not clear.
Renin-angiotensin-aldosterone system plays an important role in the regulation of the blood pressure.

Exon/intron structure of the CYP11B1 and CYP11B2 genes.
Linkage disequilibrium between the SNPs in 1Kb promoter
Relative luciferase activity after transient transfections in H295R cells

* p<0.05 vs. cells transfected with Hap-II
We have generated transgenic mice with “knocked in” hCYP11B2 gene, containing either haplotype-I or haplotype-II, at the mouse HPRT locus.

The advantage of using this gene targeting system is to selectively target a single copy of the gene at the HPRT locus in the genome.

Genotyping of hCYP11B2 transgenic mouse

hCYP11B2 Genomic DNA copy number quantitation by QRT-PCR
hCYP11B2 mRNA expression in the adrenal gland and the kidney

* p<0.05 vs. haplotype II
hCYP11B2 protein levels in the adrenal gland and the kidneys of transgenic mice

* p<0.05 vs. haplotype II
Expression of hCYP11B2 in the adrenal gland of the transgenic mice by Immunohistochemistry

ZG=Zona glomerulosa, ZF=Zona fasciculata
Chromatin immunoprecipitation schematic

1. **RNA pol II complex** + **Protein Antibody**
2. **Reverse Cross-link**
3. **DNA bound to the protein of interest**
4. **PCR determines the site specific enrichment of the protein of interest**
Chromatin immunoprecipitation assay shows stronger binding of Pol II to the promoter of hCYP11B2 gene in the TG mice containing hap-I

* p < 0.05 versus haplotype II
Plasma aldosterone levels measurement by ELISA from the transgenic mice fed normal diet

* p < 0.05 versus haplotype II
Mean arterial pressure measurement using radiotelemetry in the transgenic mice fed normal diet

* p<0.05 vs. haplotype II
Mean arterial pressure measurement using radiotelemetry in the transgenic mice fed low or high salt diet

* p<0.05 vs. respective low salt and † p<0.05 vs. haplotype II high salt.
Aldosterone levels measurement by ELISA from the plasma of the transgenic mice fed high salt diet

* p < 0.05 versus haplotype II
We have identified two distinct haplotype blocks in the hCYP11B2 gene, constituted by three SNPs that are in complete linkage disequilibrium.

Transgenic mice generated via HPRT-targeted gene knock-in strategy show increased expression of the hCYP11B2 in mice with haplotype I.

Haplotype I transgenic mice show elevated MAP and plasma aldosterone levels at baseline.

Inappropriate suppression of plasma aldosterone in transgenic mice with haplotype I of the hCYP11B2 gene contributes to salt-sensitive hypertension in these mice.
Acknowledgments

Prof. Ashok Kumar, Ph.D., FAHA
Dr. Nitin Puri

Dr. Madhusudan Ponnala

Dr. Narsimharao Keetha

Dr. Meenakshi Kaw

American Heart Association
Dr. Anita Rana

Dr. Sudhir Jain

Administrative and supporting staff

at the University of Toledo

Dr. Steven N. Fiering

This work is supported by NIH grants HL81752, HL105113, and HL092558