Presenter Disclosure Information

Sergey Dikalov, Ph.D.

Cytokine-Angiotensin II Interplay in Cyclophilin D-Mediated Vascular Oxidative Stress and Hypertension

FINANCIAL DISCLOSURE:

No relevant financial relationship exists
Cytokine-Angiotensin II Interplay in Cyclophilin D-Mediated Vascular Oxidative Stress and Hypertension

Sergey Dikalov, Ph.D.
Associate Professor of Medicine
Director of Free Radicals in Medicine Core (FRIMCORE)
Division of Clinical Pharmacology
Vanderbilt Medical Center, Nashville, TN

September 11th, 2014
San Francisco, CA, HBPR 2014
Clinical data show that **26% of adult population has hypertension**. Despite treatment with multiple drugs, **37% of hypertensive patients remain hypertensive**, likely due to the mechanisms contributing to blood pressure elevation that are not affected by current treatments.

Inflammation is commonly associated with hypertension and contributes to pathogenesis of this disease. TNFα and IL-17 are increased in hypertensive subjects by 4-fold and TNFα is an independent risk factor for hypertension.

We propose that angiotensin II and cytokines co-operatively induce mitochondrial ROS production leading to vascular impairment and hypertension, and that mitochondria-targeted therapy will decrease mitochondrial oxidative stress and reduce hypertension.
Inflammation and mitochondrial oxidative stress in hypertension

Angiotensin II, Stress, High Salt → Brain → Circumventricular organs (CVOs) → Sympathetic Activity → Blood Vessels → Kidney → T cell activation

Cytokines (IL-17; TNF-α) → Pro-oxidant milieu

Angiotensin II and cytokines co-operatively induce hypertension

A: Blood pressure

B: MitoSOX HPLC

C: Blood pressure

AngII → IL-17A → TNFα → Etanercept

O₂ → SOD2

Vascular Oxidative Stress

Hypertension

WT TgSOD2
Angiotensin II and cytokines co-operatively induce mitochondrial O_2^{-} and endothelial oxidative stress.
SOD2 overexpression inhibits cytokine-induced aortic oxidative stress and prevents NO inactivation

We have previously reported that inhibition of cyclophilin D (CypD) in isolated mitochondria reduced mitochondrial O$_2^•$.

We have tested potential role of mitochondrial CypD in vascular responses to AngII, TNFα and IL17A.
CypD depletion prevents cytokine-induced impairment of vasodilatation

CypD depletion preserve aortic vasodilatation (A) and attenuates production of mitochondrial $O_2^{•−}$ (B) in vessels treated for 24 hours with combination of AngII, TNFα and IL17A.
Mitochondrial O$_2^*$ • Cyclophilin D

HYPOTHESIS

Angiotensin II → Inflammation

IL17A TNFα

Mitochondria

↑ Cyclophilin D

mPTP

↑ Mitochondrial O$_2^*$

SOD2

Vascular Oxidative Stress

Hypertension

CypD Blocker
Angiotensin II and cytokines co-operatively induce complex I S-glutathionylation

Human aortic endothelial cells (HAECs) were treated 24 hours prior analysis.
Angiotensin II and cytokines co-operatively induce CypD-dependent mitochondrial $O_2^•$.
Mitochondrial antioxidants and CypD inhibition prevent cytokine-induced impairment of vasodilatation

Effects of SOD2, mitochondria-targeted catalase (mCAT) and CypD inhibitor Sanglifehrin A (1 µM) on vasodilatation of aortic vessels treated with AngII (10 nM), IL-17A (10 ng/ml) and TNFα (1 ng/ml) for 24 hours.
We propose that mitochondrial H$_2$O$_2$ activates CypD by S-glutathionylation and this induces overproduction of mitochondrial O$_2^•$ in the electron transport chain.
Mitochondria targeted catalase inhibits AngII-induced hypertension (A), CypD S-glutathionylation (B) and mitochondrial O_2^\cdot (C) in mCAT mice

These data implicate mitochondrial H_2O_2 in CypD activation by S-glutathionylation which induces overproduction of mitochondrial O_2^\cdot in the electron transport chain.
Targeting Cyclophilin D in Hypertension with CypD Blocker Sanglifehrin A

Treatment with CypD inhibitor Sanglifehrin A (i.p. 10 mg/kg/day) after onset of angiotensin II-induced hypertension improves vasodilatation and reduces blood pressure.
CONCLUSION

Angiotensin II \[\rightarrow \] Inflammation
\[\rightarrow \] IL17A TNFα

\[\rightarrow \] mCAT \[\uparrow \] Cyclophilin D \[\downarrow \] Sanglifehrin A

Mitochondria \[\uparrow \] Complex I-SG

\[\rightarrow \] Mitochondrial \[\uparrow \] O₂⁻

\[\rightarrow \] SOD2 \[\downarrow \] mitoTEMPO

\[\rightarrow \] Vascular Oxidative Stress

\[\rightarrow \] Hypertension
Acknowledgements

Rafal Nazarewicz
William McMaster
Anna Dikalova
Hana Itani
Alfiya Bikineyeva
David G. Harrison

Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN

Thank you Andreas Daiber for providing Sanglifehrin A (University Medical Center Mainz, Germany)

Thank you!
Question?