Presenter Disclosure Information

Naima Covassin, Ph.D.

Experimental Modest Weight Gain Increases 24-h Blood Pressure in Lean Healthy Subjects: Implications of Increased Visceral Fat

FINANCIAL DISCLOSURE:

No relevant financial relationship exists.
Experimental Modest Weight Gain Increases 24-h Blood Pressure in Lean Healthy Subjects: Implications of Increased Visceral Fat

Naima Covassin, Ph.D.

Division of Cardiovascular Diseases, Mayo Clinic

High Blood Pressure Research 2014 Scientific Sessions
September 9–12, 2014, San Francisco CA
Background

Excess Adipose Tissue

• Obesity (BMI ≥30 kg/m²) is a leading cause of morbidity and mortality

• Different obesity phenotypes related to disease risk → Regional adipose tissue distribution
 • Upper-body vs lower-body
 • Subcutaneous vs visceral fat depots
Excess Visceral Fat and Disease Risk

- Higher prevalence of CV and metabolic risk factors and disorders\(^1,2\)
- Independently linked to BP\(^3,4\) and HTN prevalence and incidence\(^5\)

Limits
- Observational studies
- High-risk populations
- Office BP

\(^1\) Vega et al., J Clin Endocrinol Metab 2006
\(^2\) Mahabadi et al., Eur Heart J 2009
\(^3\) Rhéaume et al., Hypertension 2009
\(^4\) Hayashi et al., Circulation 2003
\(^5\) Chandra et al., J Am Coll Cardiol 2014
Aims

• To determine whether experimental modest weight gain raises ambulatory blood pressure in healthy individuals

• To identify any relationship between changes in blood pressure and changes in regional fat distribution
Method

Study Population

• 26 nonobese, healthy subjects, aged 18-48 yr
• Exclusion criteria:
 • BMI \geq30 kg/m2
 • Smoking
 • Postmenopausal
 • Medical and/or psychiatric disorders
 • Medication use
Study Outline

- Physical exam
- OGTT
- VO₂ exercise test
- Polysomnography
- Blood test

WEIGHT MAINTENANCE

- BASELINE
 - 8 weeks
- FOLLOW-UP

WEIGHT GAIN

- BASELINE
 - 8 weeks
- FOLLOW-UP

SCREENING

- Randomization

OVERFEEDING: 400-1200 extra kcal/day
Measures

- Blood pressure
 - Office
 - 24-h ABPM
- Body composition
 - Dual-energy X-ray absorptiometry (DEXA)
 - Abdominal CT
- Blood specimens
 - Lipids, glucose, insulin, adipokines
Results

Demographics, Body Composition and Adipokines

<table>
<thead>
<tr>
<th></th>
<th>Weight Gainers (n=16)</th>
<th>Weight Maintainers (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Follow-up</td>
</tr>
<tr>
<td>Age, yr</td>
<td>30.4±6.6</td>
<td>-</td>
</tr>
<tr>
<td>Gender Male, n</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>71.9±12.9</td>
<td>75.6±13.4***</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>23.5±3.5</td>
<td>24.8±3.6***</td>
</tr>
<tr>
<td>Total Body Fat Mass, kg</td>
<td>21.9±8.3</td>
<td>25.2±8.6***</td>
</tr>
<tr>
<td>Total Body Fat-Free Mass, kg</td>
<td>46.9±9.3</td>
<td>47.3±9.7</td>
</tr>
<tr>
<td>Visceral Fat Area, cm²</td>
<td>61.6±32.7</td>
<td>75.5±30.9**</td>
</tr>
<tr>
<td>Subcutaneous Fat Area, cm²</td>
<td>135.5±77.4</td>
<td>167.9±82.9***</td>
</tr>
<tr>
<td>Leptin, ng/mL</td>
<td>7.3±4.6</td>
<td>11.7±5.9***</td>
</tr>
<tr>
<td>Adiponectin, ng/mL</td>
<td>7324±3874</td>
<td>8986±5463*</td>
</tr>
</tbody>
</table>

Within-group comparisons: *p<0.05; **p<0.01; ***p<0.001
Ambulatory Blood Pressure

24-h Systolic Blood Pressure

24-h Mean Arterial Pressure

24-h Pulse Pressure

- No significant changes in 24-h DBP and 24-h HR after overfeeding
- No significant changes in Office BP
Correlates of Changes in BP

- Weight Maintainers
- Weight Gainers

Δ MAP, mmHg

Δ Weight, kg

Spearman’s ρ = 0.161
P = 0.432

Δ MAP, mmHg

Δ Total Body Fat, kg

Spearman’s ρ = 0.022
P = 0.917

Δ MAP, mmHg

Δ Abdominal Visceral Fat, cm²

Spearman’s ρ = 0.452
P = 0.02
Case Example

27 yr male, BMI 24.5 kg/m²
Weight gainer

Baseline

Follow-up

Body weight: + 4.5 %
Visceral fat: + 44 %
Subcutaneous fat: + 35 %
24-h SBP/DBP/MAP: + 5/1/3 mmHg
Discussion

• Elevation in 24-h ABP after 5% weight gain in healthy subjects

• Positive relationship between changes in BP and visceral fat accumulation
Potential Mechanisms

• Visceral fat accumulation may cause increase in BP through greater secretion of:

 FREE-FATTY ACIDS

 ANGIOTENSINOGEN

 PRO-INFLAMMATORY CYTOKINES

• A third factor may drive increases in both visceral fat and BP
 • HPA axis activation
Clinical Implications

• Visceral adiposity may contribute to obesity-related HTN

• Modest weight gain may increase BP if fat accumulation is predominantly visceral

• Weight loss interventions targeted at visceral fat reduction
Acknowledgements

- Prachi Singh, Ph.D.
- Fatima H. Sert-Kuniyoshi, Ph.D.
- Abel Romero-Corral, M.D.
- Diane E. Davison, R.N.
- Francisco Lopez-Jimenez, M.D.
- Michael D. Jensen, M.D.
- Virend K. Somers, M.D., Ph.D.

Funding: National Institutes of Health
American Heart Association