A Genome-wide meta-analysis of the combined influence of physical activity and genetic variants on body fat distribution in over 94,000 individuals of European descent

Mariaelisa Graff
On behalf of the GIANT consortium
03-21-2014

We have nothing to disclose.
Waist and Waist-to-Hip ratio (WHR) are measures of Central Adiposity

Central Adiposity:
- Waist circumference >102 cm in men and >88 cm in women
- Waist–hip ratio >0.9 for men and >0.85 for women

Insulin Resistance
High Triglycerides
High Blood Pressure
High cholesterol

Genes
Lifestyle factors

Central Adiposity:
Waist circumference >102 cm in men and >88 cm in women
Waist–hip ratio >0.9 for men and >0.85 for women
Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

Iris M Heid, Anne U Jackson, Joshua C Randall, Thomas W Winkler, Lu Qi, Valgerdur
Main Questions

1- Are there genome-wide differences between ACTIVE and INACTIVE Strata?
 -Does higher activity attenuate (or lower activity exacerbate) the associations between Genetic Loci and Waist-to-hip ratio?

2- Are there underlying differences by activity status that are masking unidentified loci associated with Waist-to-hip ratio?
The Genetic Investigation of ANthropometric Traits (GIANT) consortium

• Focuses on exploring the genetics of anthropometric traits.
 – Analyses have included over 90 genome-wide studies and 25 metabochip studies.
 – Primarily European Descent
Study Design

Genome-wide scan by activity status on waist-to-hip ratio **adjusted for BMI**

Stage 1:
38 GWAS: ACTIVE and INACTIVE individuals

- Meta-analyze ACTIVE and INACTIVE
- Compare ACTIVE vs. INACTIVE

Stage 2:
25 GWAS or Metabochip studies: ACTIVE and INACTIVE individuals

- Meta-analyze ACTIVE and INACTIVE
- Compare ACTIVE vs. INACTIVE

Stage 1+2:
ACTIVE and INACTIVE individuals

- Meta-analyze ACTIVE and INACTIVE
- Compare ACTIVE vs. INACTIVE
Standardization of Physical Activity

Qualitative or categorical data

INACTIVE:
• Sedentary occupation
• <1hr/wk of moderate-to-vigorous physical activity

ACTIVE: All Others

Quantitative or measured data

INACTIVE:
• 20% lowest age- and sex-specific physical activity levels

ACTIVE: All Others

Total Sample ACTIVE: 27,016 Men & 47,288 Women
Total Sample INACTIVE: 7,223 Men & 11,502 Women
Analytic Approach
1- Are there genome-wide differences between ACTIVE and INACTIVE Strata?

Z-test for differences

\[\beta(\text{se}) \quad \text{INACTIVE} \quad \text{vs} \quad \beta(\text{se}) \quad \text{ACTIVE} \]

Genome-wide significance at \(p<5E-08 \)
Analytic Approach
2- Are the underlying differences masking unidentified loci associated with Waist-to-hip ratio?

Joint Test

Marginal Effect

β(se)
INACTIVE and ACTIVE

+

Activity Differences

β(se)
INACTIVE

vs

β(se)
ACTIVE

Genome-wide significance at p<5E-08
1- Are there genome-wide differences between ACTIVE and INACTIVE Strata?

![P-values for Difference
Active versus Inactive](chart.png)

- rs4235521
 - p = 5.1E-08
- p = 5E-06
- p = 5E-06

Women

Men
Effect sizes of loci with P-value $<5 \times 10^{-06}$ for difference between ACTIVE and INACTIVE Men

Per allele change in WHR

ACTIVE MEN

INACTIVE MEN

CD48
SPAG16
CDH12
EFNA5
DOCK4-ZNF277
PTER
FLT1
ANKRD5
Effect sizes of loci with P-value < 5e^-06 for difference between ACTIVE and INACTIVE Women

Per Allele Change in WHR
2- Are the underlying differences masking unidentified loci associated with Waist-to-hip ratio?
Joint P-value largely driven by SNP main effect

<table>
<thead>
<tr>
<th>Gene</th>
<th>P-value for Difference</th>
<th>Joint P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LYPLAL1</td>
<td>0.007</td>
<td>2.14E-08</td>
</tr>
<tr>
<td>CCDC92</td>
<td>0.002</td>
<td>2.61E-11</td>
</tr>
<tr>
<td>RSPO3</td>
<td>0.002</td>
<td>1.26E-13</td>
</tr>
<tr>
<td>ADAMTS9</td>
<td>0.04</td>
<td>7.88E-11</td>
</tr>
<tr>
<td>TBX15-WARS2</td>
<td>0.10</td>
<td>4.80E-09</td>
</tr>
<tr>
<td>VEGFA</td>
<td>0.52</td>
<td>4.76E-08</td>
</tr>
<tr>
<td>HOXC13</td>
<td>0.28</td>
<td>3.84E-10</td>
</tr>
<tr>
<td>ITPR2-SSPN</td>
<td>0.36</td>
<td>3.31E-11</td>
</tr>
<tr>
<td>ZNRF3-KREMEN1</td>
<td>0.97</td>
<td>3.77E-09</td>
</tr>
<tr>
<td>NFE2L3</td>
<td>0.66</td>
<td>1.15E-08</td>
</tr>
<tr>
<td>GRB14</td>
<td>0.35</td>
<td>1.97E-16</td>
</tr>
<tr>
<td>DNM3-PIGC</td>
<td>0.60</td>
<td>9.90E-09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene</th>
<th>P-value for Difference</th>
<th>Joint P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDF5</td>
<td>0.011</td>
<td>7.63E-10</td>
</tr>
</tbody>
</table>
Conclusions

• No loci reach genome-wide significant for difference of effect between INACTIVE and ACTIVE

 – Magnitude of effect sizes between loci at p<5e-06 appears larger in INACTIVE compared to ACTIVE

• Joint test did not reveal additional novel loci

 • Little difference in effect between INACTIVE and ACTIVE at strata.

• There are challenges in defining activity status across several studies.
Future Direction

• Stage 2 will include 25 additional GWAS and Metabochip studies.

• Compare results of differences in activity strata in European Cohorts only versus US cohorts only.

• Compare results of differences in activity strata for Cohorts with quantitative or measured data versus qualitative only data.
Acknowledgements

• Main analysts
 Flora Xue
 Thomas Winkler
 Anne Justice
 Kris Young
 Robert Scott
 Tarun S. Ahluwalia
 Audrey Chu
 Megan Grove
 Jake N. Julius
 Czajkowski Heard-Costa
 Qi
 David Anubha
 Ngwa
 Mahajan
 Llida
 Barata
 Applegate

• Overall direction
 Tuomas O. L. Adrienne
 Ruth Ingrid
 Kilpeläinen
 Cupples
 Loos
 Borecki
 North

• GIANT consortium

• Participating cohorts
 • ADVANCE, AE, AGES, AMCPAS, AMISH, arcOGEN, ARIC, BC58-1DGC, BC58-WTCCC, BLSA, BPROOF, BSN/BHS, CAHRES, CARDIOGENICS, CHS, CoLaus, COROGENE, CROATIA_SPLIT, CROATIA_VIS, deCODE, DIAGEN, DESIR, DGI, DNBC, EGCUT370, EGCUTomni, EGCUT (not T2D), EGCUT (T2D), Ely, EPIC, EPIC(T2D), ERF, ERGO/RS1, FamHS, Fenland, FINGESTURE, FLEMENGHO-EPOGH, FramHS, FUSION2, FUSION, GASP1, GASP2, GENDIAN, GEOS, GERMIFSI, GERMIFSIII, GLACIER, GOOD, HEALTH2006, HELICMANOLIS, HELICPomak, HERITAGE, HUNT.TROMSO, IMPROVE, INTER99, H2000, HBCS, HYPERGENES, InChianti, IPM, Johnson County, KORAS3, KORAS4, KORCULA, Lifelines, Lolipop, LURIC, MALE_GOYA, MAP, MGS, MICRO$S, MIGEN, NBS, NELSON, NFBC, NHS, NSHD, NPSHS, NTRNESDA, ORCADES, PIVUS, PLCO, PLCO2, PREVEND, PROCARDIS, PROSPPerver/PHASE, QFS, QIMR, RISC, ROS, RS2, RS3, RUNMC, SardiNIA, SCARFSHEEP, SEARCH, SHIP, SHIP-trend, SORBS, STR, SWABIA, T2D, THISEAS, TRAILS, TWINGENE, TWINSUK, ULSAM, WGHS, Whitehall, YFS
GIANT GxE - Approach 2:

Model 3 SNPadjE Stage 1+2 results (P_{main})

- $P_{\text{main}} < 1e-5$
- $P_{\text{main}} < 5e-8$

Test difference between strata

Power to detect difference between two strata:

- $N = 200K$
- 2 strata (equal size, e.g. men and women)

Fix effect size in women, using R^2 of PPARG in previous GIANT analyses on WHRadjBMI:

$R^2_{\text{women}} = 0.00057$

Thomas Winkler 14-03-06
1. Concordant direction but different magnitude: e.g. $\beta_m > \beta_w$, $\beta_{>50} < \beta_{\leq 50}$

Filter on combined P-Value $< 10^{-5}$
e.g. $+\beta_m = -\beta_w$,
$-\beta_{>50} = +\beta_{\leq50}$