Disclosures

• None
Dendritic cells mediate T cell activation in the kidney lymph node during hypertension

Nathan Rudemiller, Jiandong Zhang, Gianna Hammer, Yen-Rei A Yu, Robert Griffiths, Michael Gunn, Steven Crowley

Duke University and Durham VA Medical Centers
Dendritic cells (DCs) and hypertension

- Dendritic cells are potent antigen presenting cells that mediate T cell activation
- Adoptive transfer of DCs from hypertensive mice increased susceptibility to hypertension
- Preventing interactions between antigen presenting cells and T cells attenuated hypertension
T lymphocytes and hypertension

• T cells are adaptive immune cells that infiltrate the kidney during hypertension

• Pharmacological or genetic inhibition of T cells:
 -- diminishes hypertension
 -- Preserves renal sodium excretion after a hypertensive stimulus

• Inflammatory cytokines produced by mononuclear cells that infiltrate the hypertensive kidney:
 -- Upregulate sodium transporter activity
 -- Promote sodium retention by the kidney

Hypothesis

Dendritic cells activate T cells in the kidney lymph node during hypertension
Hypertensive model – chronic angiotensin II infusion

- Weeks 0 1 2
- Implant Ang II pump 300 ng/kg/min
- Unilateral Nephrectomy
- Implant radiotelemeter
- Record Blood Pressure
- Weeks
- Tissue harvest
- C57BL/6
Kidney Lymph Node - Hypertension enhances CD44 expression on T cells

Control

Ang II

CD4 T cells

CD44-APC

CD3-PE

CD8 T cells

P = 0.009

P = 0.01
Model of dendritic cell deficiency (FLT3L-/- = “DC KO”)

• FMS-like tyrosine kinase 3 ligand (FLT3L) is a cytokine important in the development and steady state regulation of dendritic cells

• Widely used model of DC deficiency

• T cell compartment is undisturbed

DC KO mice have attenuated hypertension

MAP (mmHg)

WT
DC KO

Days of ANG II infusion

P = 0.04

n = 4-5/group
Kidney Lymph Node - DC deficiency blunts accumulation of CD44$^{\text{hi}}$ T cells during hypertension

CD4 T cells

CD44-APC

CD8 T cells

CD3-PE

WT

DC KO

P = 0.04

P = 0.08
Kidney - DC deficiency attenuates accumulation of CD44^{hi} T cells in the hypertensive kidney

WT DC KO

%CD44^{hi} of CD4 T cells

%CD44^{hi} of CD8 T cells

CD4 T cells

CD8 T cells

$P = 0.001$

$P = 0.05$
Kidney - DC deficiency attenuates accumulation of CD44hi Effector T cells in the hypertensive kidney.
Model of spontaneous dendritic cell activation

\(\text{CD11c-Cre A20}^{\text{flox/wt}} = \text{“DC ACT”} \)

- A20 is a ubiquitin-editing protein that prevents NF-κB-mediated DC maturation
- CD11c is a widely used Cre for dendritic cells
- Heterozygous deletion of A20 in DCs yields mice that:
 -- are phenotypically normal at baseline
 -- have enhanced T cell activation

DC ACT have augmented Ang II-induced hypertension

$P = 0.04$
Kidney Lymph Node - DC ACT have greater proportion CD44$^{\text{hi}}$ T cells during hypertension

CD4 T cells

CD8 T cells
Summary

• Dendritic cell deficiency attenuates hypertension and blunts T cell activation in the kidney and its draining lymph node during hypertension.

• Spontaneous dendritic cell activation augments blood pressure elevation and T cell activation in the kidney lymph node during hypertension.
• Dendritic cells make a key contribution to blood pressure elevation during renin-angiotensin system activation.

• Further analysis of activated T cells in the kidney and its draining lymph node should reveal mechanisms through which DCs exacerbate hypertension.

• Investigating proximal mechanisms of immune activation in hypertension should lead to novel immunomodulatory therapies to reduce blood pressure and target organ damage.
Acknowledgements

Duke Departments of Medicine and Immunology
Jiandong Zhang
Gianna Hammer
Yen-Rei A Yu
Robert Griffiths
Michael Gunn
Steven Crowley

Funding
National Heart, Lung, and Blood Institute
Department of Veterans Affairs
American Heart Association