

# 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease

Developed in collaboration with and endorsed by the American Association for Thoracic Surgery, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons







- This slide set is adapted from the 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease. Published on Dec 17, 2020, available at: *Journal* of the American College of Cardiology J Am Coll Cardiol. Dec 17, 2020. Epublished DOI: 10.1016/j.jacc.2020.11.018 and *Circulation*. doi: 10.1161/CIR.0000000000000923
- The full-text guidelines are available on the ACC website here, https://www.jacc.org/doi/pdf/10.1016/j.jacc.2020.11.018 and the AHA website here, https://www.ahajournals.org/doi/10.1161/CIR.0000000000000923



# 2020 Writing Committee Members\* American Heart Association.

Catherine M. Otto, MD, FACC, FAHA, Co-Chair Rick A. Nishimura, MD, MACC, FAHA, Co-Chair

Robert O. Bonow, MD, MS, MACC, FAHA Blasé A. Carabello, MD, FACC, FAHA John P. Erwin III, MD, FACC, FAHA Federico Gentile, MD, FACC Hani Jneid, MD, FACC, FAHA Eric V. Krieger, MD, FACC Michael Mack, MD, MACC

Christopher McLeod, MBCHB, PhD, FAHA Patrick O'Gara, MD, MACC, FAHA<sup>†</sup> Vera H. Rigolin, MD, FACC, FAHA Thoralf M. Sundt III, MD, FACC, FAHA Annemarie Thompson, MD Christopher Toley

\*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. †ACC/AHA Joint Committee on Clinical Practice Guidelines Liaison.





Table 2. ACC/AHA Applying Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care (Updated May 2019)\*

#### **CLASS (STRENGTH) OF RECOMMENDATION**

#### CLASS 1 (STRONG)

#### Suggested phrases for writing recommendations:

- Is recommended
- Is indicated/useful/effective/beneficial
- Should be performed/administered/other
- Comparative-Effectiveness Phrases†:
- Treatment/strategy A is recommended/indicated in preference to treatment B
- Treatment A should be chosen over treatment B

#### CLASS 2a (MODERATE)

#### Benefit >> Risk

Benefit >>> Risk

#### Suggested phrases for writing recommendations:

- Is reasonable
- Can be useful/effective/beneficial
- Comparative-Effectiveness Phrasest:
  - Treatment/strategy A is probably recommended/indicated in preference to treatment B
  - It is reasonable to choose treatment A over treatment B

#### CLASS 2b (WEAK)

#### Suggested phrases for writing recommendations:

- May/might be reasonable
- May/might be considered
- Usefulness/effectiveness is unknown/unclear/uncertain or not wellestablished

**CLASS 3: No Benefit (MODERATE)** (Generally, LOE A or B use only)

#### Suggested phrases for writing recommendations:

- Is not recommended
- Is not indicated/useful/effective/beneficial
- Should not be performed/administered/other

#### Class 3: Harm (STRONG) **Risk > Benefit**

#### Suggested phrases for writing recommendations:

- Potentially harmful
- Causes harm
- Associated with excess morbidity/mortality
- Should not be performed/administered/other

#### LEVEL (QUALITY) OF EVIDENCE<sup>‡</sup>

#### LEVEL A

- High-quality evidence<sup>‡</sup> from more than 1 RCT
- · Meta-analyses of high-quality RCTs
- One or more RCTs corroborated by high-quality registry studies

#### LEVEL B-R

- Moderate-quality evidence‡ from 1 or more RCTs
- Meta-analyses of moderate-guality RCTs

#### LEVEL B-NR

- Moderate-guality evidence‡ from 1 or more well-designed, wellexecuted nonrandomized studies, observational studies, or registry studies
- · Meta-analyses of such studies

#### LEVEL C-LD

- Randomized or nonrandomized observational or registry studies with limitations of design or execution
- · Meta-analyses of such studies
- · Physiological or mechanistic studies in human subjects

#### LEVEL C-EO

Consensus of expert opinion based on clinical experience

COR and LOE are determined independently (any COR may be paired with any LOE).

A recommendation with LOE C does not imply that the recommendation is weak. Many important clinical questions addressed in guidelines do not lend themselves to clinical trials. Although RCTs are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

- \* The outcome or result of the intervention should be specified (an improved clinical outcome or increased diagnostic accuracy or incremental prognostic information).
- † For comparative-effectiveness recommendations (COR 1 and 2a; LOE A and B only). studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.
- ‡ The method of assessing quality is evolving, including the application of standardized, widely-used, and preferably validated evidence grading tools; and for systematic reviews, the incorporation of an Evidence Review Committee.

COR indicates Class of Recommendation; EO, expert opinion; LD, limited data; LOE, Level of Evidence; NR, nonrandomized; R, randomized; and RCT, randomized controlled trial.

Benefit = Risk

Benefit ≥ Risk



#### (Randomized)

#### (Nonrandomized)

#### (Limited Data)

#### (Expert Opinion)



# **Top 10 Take-Home Messages**

# 2020 Valvular Heart Disease Guidelines







1. Disease stages in patients with valvular heart disease should be classified (Stages A, B, C, and D) on the basis of symptoms, valve anatomy, the severity of valve dysfunction, and the response of the ventricle and pulmonary circulation.





2. In the evaluation of a patient with valvular heart disease, history and physical examination findings should be correlated with the results of noninvasive testing (i.e., ECG, chest x-ray, transthoracic echocardiogram). If there is discordance between the physical examination and initial noninvasive testing, consider further noninvasive (computed tomography, cardiac magnetic resonance imaging, stress testing) or invasive (transesophageal echocardiography, cardiac catheterization) testing to determine optimal treatment strategy.





# Top 10 Take Home Messages

3. For patients with valvular heart disease and atrial fibrillation (except for patients with rheumatic mitral stenosis or a mechanical prosthesis), the decision to use oral anticoagulation to prevent thromboembolic events, with either a vitamin K antagonist or a nonvitamin K antagonist anticoagulant, should be made in a shared decision-making process based on the  $CHA_2DS_2$ -VASc score. Patients with rheumatic mitral stenosis or a mechanical prosthesis and atrial fibrillation should have oral anticoagulation with a vitamin K antagonist.





4. All patients with severe valvular heart disease being considered for valve intervention should be evaluated by a multidisciplinary team, with either referral to or consultation with a Primary or Comprehensive Valve Center.





5. Treatment of severe aortic stenosis with either a transcatheter or surgical valve prosthesis should be based primarily on symptoms or reduced ventricular systolic function. Earlier intervention may be considered if indicated by results of exercise testing, biomarkers, rapid progression, or the presence of very severe stenosis.





# **Top 10 Take Home Messages**

6. Indications for transcatheter aortic valve implantation are expanding as a result of multiple randomized trials of transcatheter aortic valve implantation atrio versus surgical aortic valve replacement. The choice of type of intervention for a patient with severe aortic stenosis should be a shared decisionmaking process that considers the lifetime risks and benefits associated with type of valve (mechanical versus bioprosthetic) and type of approach (transcatheter versus surgical).





7. Indications for intervention for valvular regurgitation are relief of symptoms and prevention of the irreversible long-term consequences of left ventricular volume overload. Thresholds for intervention now are lower than they were previously because of more durable treatment options and lower procedural risks.





8. A percutaneous edge-to-edge mitral repair is of benefit to patients with severely symptomatic primary mitral regurgitation who are at high or prohibitive risk for surgery, as well as to a select subset of patients with severely symptomatic secondary mitral regurgitation despite guideline-directed management and therapy for heart failure.





9. Patients presenting with severe symptomatic isolated tricuspid regurgitation, commonly associated with device leads and atrial fibrillation, may benefit from surgical intervention to reduce symptoms and recurrent hospitalizations if done before the onset of severe right ventricular dysfunction or end-organ damage to the liver and kidney.





10. Bioprosthetic valve dysfunction may occur because of either degeneration of the valve leaflets or valve thrombosis. Catheter-based treatment for prosthetic valve dysfunction is reasonable in selected patients for bioprosthetic leaflet degeneration or paravalvular leak in the absence of active infection.





# **General Principles**





| Reason                                                | Test                 | Indication                                                                                    |
|-------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------|
| <b>Initial evaluation:</b> All patients with known or | TTE*                 | Establishes chamber size and function<br>and severity, and effect on pulmonary<br>circulation |
| suspected valve disease                               | History and physical | Establishes symptom severity, comorb<br>presence and severity, and presence of                |
|                                                       | ECG                  | Establishes rhythm, LV function, and phypertrophy                                             |

\*TTE is the standard initial diagnostic test in the initial evaluation of patients with known or suspected VHD



# n, valve morphology

## and systemic

# bidities, valve disease

## presence or absence of



| Reason                                           | Test        | Indication                                  |
|--------------------------------------------------|-------------|---------------------------------------------|
| Further diagnostic testing: Information          | Chest x-ray | Important for the symptomatic patient; es   |
| required for equivocal symptom status,           |             | presence or absence of pulmonary vascu      |
| discrepancy between examination and              |             | lung disease, and calcification of aorta an |
| echocardiogram, further definition of valve      | TEE         | Provides high-quality assessment of mitr    |
| disease, or assessing response of the ventricles |             | including definition of intracardiac mass   |
| and pulmonary circulation to load and to         |             | abnormalities (e.g., intracardiac abscess,  |
| exercise                                         | CMR         | Provides assessment of LV volumes and       |
|                                                  |             | and aortic disease                          |
|                                                  |             |                                             |



#### establishes heart size and

#### ular congestion, intrinsic

#### and pericardium

#### tral and prosthetic valve,

#### sses and possible associated

#### , LA thrombus)

#### d function, valve severity,



| Reason                                   | Test            | Indication                         |
|------------------------------------------|-----------------|------------------------------------|
| Further diagnostic testing:              | PET CT          | Aids in determination of active in |
| Information required for equivocal       |                 | inflammation                       |
| symptom status, discrepancy between      | Stress testing  | Gives an objective measure of exe  |
| examination and echocardiogram,          |                 |                                    |
| further definition of valve disease, or  | Catheterization | Provides measurement of intracar   |
| assessing response of the ventricles and |                 | pressures, valve severity, and hem |
| pulmonary circulation to load and to     |                 | exercise and drugs                 |
| exercise                                 |                 |                                    |



#### n

## nfection or

## kercise capacity

## ardiac and pulmonary

## modynamic response to



| Reason                        | Test       | Indication                          |
|-------------------------------|------------|-------------------------------------|
| Further risk stratification:  | Biomarkers | Provide indirect assessment of fill |
| Information on future risk of |            | myocardial damage                   |
| the valve disease, which is   | TTE strain | Helps assess intrinsic myocardial   |
| important for determination   |            |                                     |
| of timing of intervention     | CMR        | Assesses fibrosis by gadolinium e   |
|                               |            |                                     |



# lling pressures and performance enhancement



|                                | 1               |                                    |
|--------------------------------|-----------------|------------------------------------|
| Reason                         | Test            | Indication                         |
| Further risk stratification:   | Stress testing  | Provides prognostic markers        |
| Information on future risk of  |                 |                                    |
| the valve disease, which is    | Procedural risk | Quantified by STS (Predicted Risl  |
| important for determination of |                 | TAVI scores                        |
| timing of intervention         | Frailty score   | Provides assessment of risk of pro |
|                                |                 | recovery of quality of life        |



# sk of Mortality) and

# ocedure and chance of



| Reason                                     | Test                                                 | Indicat                                     |
|--------------------------------------------|------------------------------------------------------|---------------------------------------------|
| Preprocedural testing:                     | Dental examination                                   | Rules out potential infection sou           |
| Testing required before valve intervention | CT coronary angiogram or invasive coronary angiogram | Provides an assessment of coror             |
|                                            | CT: peripheral                                       | Assess femoral access for TAVI procedures   |
|                                            | CT: cardiac                                          | Assesses suitability for TAVI an procedures |

CMR indicates cardiac magnetic resonance; CT, computed tomography; ECG, electrocardiogram; HF, heart failure; LV, left ventricular; PET, positron emission tomography; STS, Society of Thoracic Surgeons; TAVI, transcatheter aortic valve implantation; TEE, transesophageal echocardiography; TTE, transthoracic echocardiography; and VHD, valvular heart disease.



#### tion

ources

onary anatomy

'I and other transcatheter

and other transcatheter



# Table 4. Stages of VHD

| Stage | Definition         | Description                                                     |
|-------|--------------------|-----------------------------------------------------------------|
| А     | At risk            | Patients with risk factors for development of VHD               |
| В     | Progressive        | Patients with progressive VHD (mild to moderate severity and as |
| C     | Asymptomatic       | Asymptomatic patients who have the criteria for severe VHD:     |
|       | severe             | C1: Asymptomatic patients with severe VHD in whom the LV        |
|       |                    | compensated space                                               |
|       |                    | C2: asymptomatic patients with severe VHD with decompensa       |
| D     | Symptomatic severe | Patients who have developed symptoms as a result of VHD         |



### symptomatic)

## or RV remains

## ation of LV or RV



# Diagnosis and Follow-up





# Diagnostic Testing: Routine Follow-up

Table 5. Frequency of Echocardiograms in Asymptomatic Patients with VHD and Normal LV Function

|             | Type of Valve Lesion                                         |                                   |                                                        |        |  |
|-------------|--------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|--------|--|
| Stage       | Aortic Stenosis*                                             | Aortic Regurgitation              | Mitral Stenosis                                        | Mitral |  |
| Progressive | • Every 3–5 y (mild                                          | • Every 3–5 y (mild               | Every 3–5 y                                            | • Ever |  |
| (Stage B)   | severity; V <sub>max</sub> 2.0–2.9<br>m/s)                   | severity)                         | $\left  (MV \text{ area } > 1.5 \text{ cm}^2) \right $ |        |  |
|             | • Every 1–2 y moderate<br>severity; V <sub>max</sub> 3.0–3.9 | • Every 1–2 y (moderate severity) |                                                        | • Even |  |
|             | m/s)                                                         |                                   |                                                        |        |  |

Patients with mixed valve disease may require serial evaluations at intervals earlier than recommended for single-valve lesions. These intervals apply to most patients with each valve lesion and do not take into consideration the etiology of the valve disease. \*With normal stroke volume.





#### Regurgitation

## ery 3–5 y (mild severity)

## ery 1–2 y (moderate

erity)



# Diagnostic Testing: Routine Follow-up

#### Table 5. Frequency of Echocardiograms in Asymptomatic Patients with VHD and Normal LV Function

|                        | Type of Valve Lesion                             |                                |                                                                            |            |
|------------------------|--------------------------------------------------|--------------------------------|----------------------------------------------------------------------------|------------|
| Stage                  | Aortic Stenosis*                                 | Aortic Regurgitation           | Mitral Stenosis                                                            | Mitral Re  |
| Severe<br>asymptomatic | • Every 6–12 mo<br>$(V_{max} \ge 4 \text{ m/s})$ | • Every 6–12 mo                | <ul> <li>Every 1–2 y (MV area 1.0–</li> <li>1.5 cm<sup>2</sup>)</li> </ul> | Every 6–1  |
| (Stage C1)             |                                                  | • Dilating LV: More frequently | • Every year (MV area <1.0<br>cm <sup>2</sup> )                            | Dilating L |

Patients with mixed valve disease may require serial evaluations at intervals earlier than recommended for single-valve lesions. These intervals apply to most patients with each valve lesion and do not take into consideration the etiology of the valve disease. \*With normal stroke volume.





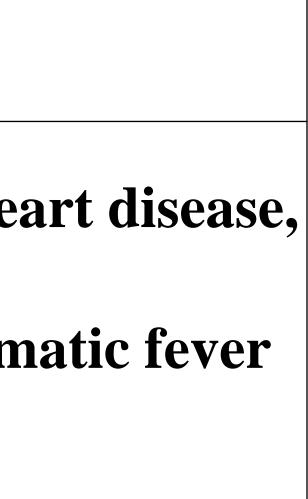
## Regurgitation

-12 mo

LV: More frequently



# **Basic Principles of Medical Therapy**






| COR | LOE  | Recommendation                   |
|-----|------|----------------------------------|
|     |      | 1. In patients with rheumatic he |
| 1   | C-EO | secondary prevention of rheun    |
|     |      | is indicated.                    |
|     |      |                                  |









# Table 6. Secondary Prevention of Rheumatic Fever

| Antibiotics for Prevention                                | <b>Dosage</b> ‡                                       |
|-----------------------------------------------------------|-------------------------------------------------------|
| Penicillin G benzathine                                   | 1.2 million U intramuscularly every 4 wk <sup>3</sup> |
| Penicillin V potassium                                    | 200 mg orally twice daily                             |
| Sulfadiazine                                              | 1 g orally once daily                                 |
| Macrolide or azalide antibiotic (for patients allergic to | Varies                                                |
| penicillin and sulfadiazine)†                             |                                                       |

 $\ddagger$  In patients with documented valvular heart disease, the duration of rheumatic fever prophylaxis should be  $\ge 10$  years or until the patient is 40 years of age (whichever is longer). Lifelong prophylaxis may be recommended if the patient is at high risk of group A streptococcus exposure. Secondary rheumatic heart disease prophylaxis is required even after valve replacement.

\*Administration every 3 wk is recommended in certain high-risk situations.

<sup>†</sup>Macrolide antibiotics should not be used in persons taking other medications that inhibit cytochrome P450 3A, such as azole antifungal agents, HIV protease inhibitors, and some selective serotonin reuptake inhibitors.

Adapted from Gerber et al



| * |      |  |
|---|------|--|
|   |      |  |
|   |      |  |
|   |      |  |
|   |      |  |
|   | <br> |  |



# Table 7. Duration of Secondary **Prophylaxis for Rheumatic Fever**

| Туре                                                | Duration After Last Attack*             |
|-----------------------------------------------------|-----------------------------------------|
| Rheumatic fever with carditis and residual heart    | 10 y or until patient is 40 y of age (w |
| disease (persistent VHD <sup>†</sup> )              |                                         |
| Rheumatic fever with carditis but no residual heart | 10 y or until patient is 21 y of age (w |
| disease (no valvular disease†)                      |                                         |
| Rheumatic fever without carditis                    | 5 y or until patient is 21 y of age (wh |

\*Lifelong prophylaxis may be recommended if the patient is at high risk of group A streptococcus exposure. Secondary rheumatic heart disease

prophylaxis is required even after valve replacement. †Clinical or echocardiographic evidence. Adapted from Gerber et al



# whichever is longer) whichever is longer)

## hichever is longer)



# IE Prophylaxis

| COR        | LOE  | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | C-LD | <ol> <li>Antibiotic prophylaxis is reasonable before dental proce<br/>manipulation of gingival tissue, manipulation of the periapica<br/>perforation of the oral mucosa in patients with VHD who have         <ul> <li>a. Prosthetic cardiac valves, including transcatheter-implant<br/>homografts.</li> <li>b. Prosthetic material used for cardiac valve repair, such as a<br/>chords, or clips.</li> <li>c. Previous IE.</li> <li>d. Unrepaired cyanotic congenital heart disease or repaired of<br/>disease, with residual shunts or valvular regurgitation at t<br/>adjacent to the site of a prosthetic patch or prosthetic devi<br/>e. Cardiac transplant with valve regurgitation attributable t<br/>abnormal valve.</li> </ul> </li> </ol> |



# cedures that involve cal region of teeth, or e any of the following: nted prostheses and

annuloplasty rings,

l congenital heart the site of or vice.

to a structurally



# IE Prophylaxis

| COR          | LOE                                       | Recommendation                              |
|--------------|-------------------------------------------|---------------------------------------------|
|              |                                           | 2. In patients with VHD who are at high ris |
| 3: NoBenefit |                                           | antibiotic prophylaxis is not recommende    |
|              | procedures (e.g., TEE, esophagogastrodu   |                                             |
|              | colonoscopy, or cystoscopy) in the absenc |                                             |
|              |                                           | infection.                                  |



# sk of IE,

# led for nondental

# uodenoscopy,

# ce of active



# Anticoagulation for AF in Patients With VHD

| COR | LOE  | Recommendations                                           |
|-----|------|-----------------------------------------------------------|
|     |      | 1. For patients with AF and native valve heart disease (e |
|     |      | mitral stenosis [MS]) or who received a bioprosthetic     |
| 1   | Α    | a non–vitamin K oral anticoagulant (NOAC) is an effe      |
|     |      | VKA anticoagulation and should be administered on         |
|     |      | patient's CHA <sub>2</sub> DS <sub>2</sub> -VASc score.   |
|     |      | 2. For patients with AF and rheumatic MS, long-term V     |
| 1   | C-EO | anticoagulation is recommended.                           |
|     |      |                                                           |





## except rheumatic

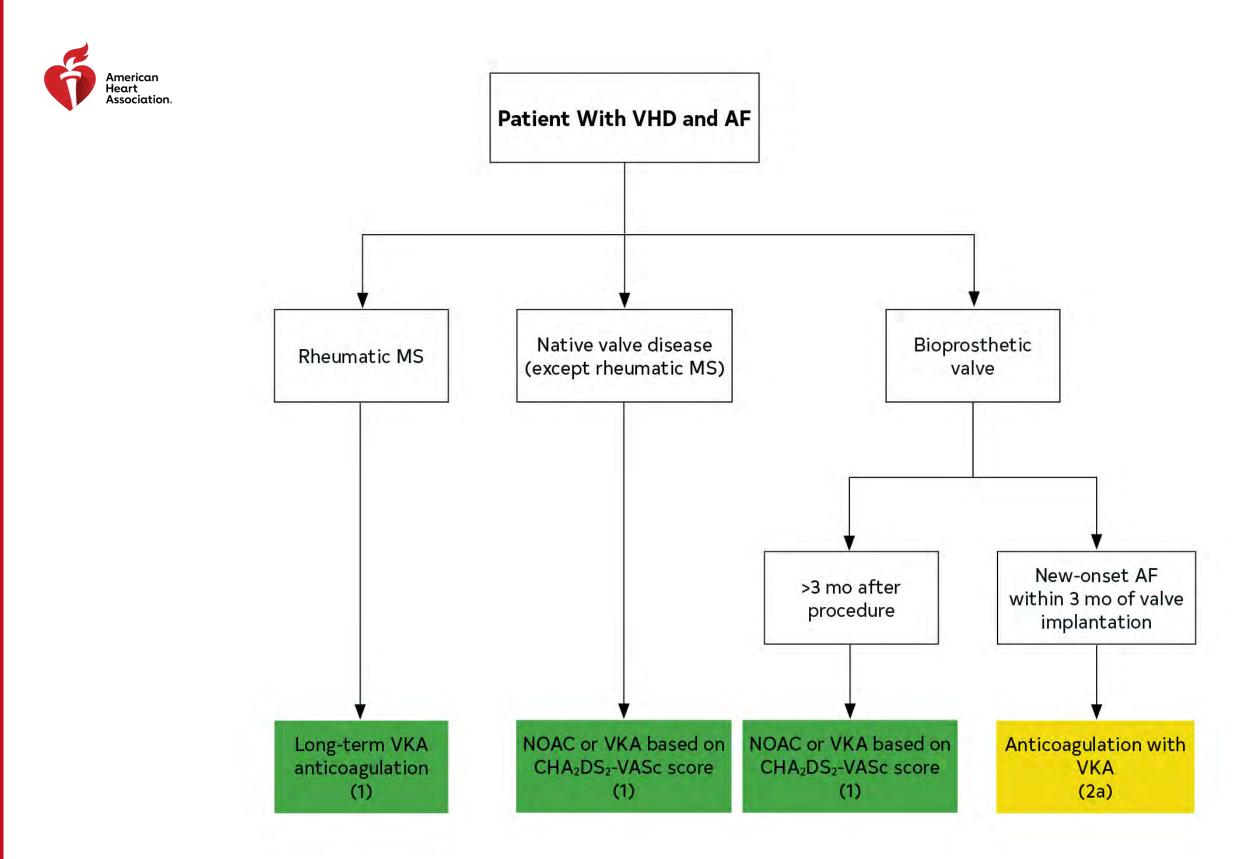
## valve >3 months ago,

## fective alternative to

## the basis of the

## **VKA oral**




# Anticoagulation for AF in Patients With VHD

| COR            | LOE         | Recommendations                                                                                                                             |
|----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a     | <b>B-NR</b> | 3. For patients with new-onset AF ≤ 3 months af<br>transcatheter bioprosthetic valve replacement<br>with a VKA is reasonable .              |
| <b>3: Harm</b> | B-R         | 4. In patients with mechanical heart valves with<br>who require long-term anticoagulation with<br>valve thrombosis, NOACs are not recommend |





# fter surgical or it, anticoagulation h or without AF VKA to prevent nded.





# Figure 1. Anticoagulation for AF in Patients With VHD.

Colors corresponds to Table 2.





| COR | LOE  | Recommendation                                                                                                                                                                                                                                       |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-EO | 1. For patients with VHD for whom intervention is contend<br>individual risks should be calculated for specific surgi<br>transcatheter procedures, using online tools when ava<br>discussed before the procedure as a part of a shared d<br>process. |





# templated,

# gical and/or

# ailable, and

# decision-making



### Table 8. Risk Assessment for Surgical Valve Procedures

Footnote text located on the next slide

| Criteria                                                                                                | Low-Risk SAVR (Must<br>Meet ALL Criteria in This<br>Column) | Low-Risk Surgical Mitral<br>Valve Repair for Primary<br>MR (Must Meet ALL<br>Criteria in This Column) | High Surgical Risk<br>(Any 1 Criterion in This<br>Column) | Proh<br>(Any |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------|
| STS-predicted risk of death*                                                                            | <3%<br>AND                                                  | <1%<br>AND                                                                                            | >8%<br>OR                                                 | Promote      |
| Frailty†                                                                                                | None<br>AND                                                 | None<br>AND                                                                                           | ≥2 Indices (moderate to severe)<br>OR                     | ≥2           |
| Cardiac or other major<br>organ system compromise<br>not to be improved<br>postoperatively <sup>‡</sup> | None<br>AND                                                 | None<br>AND                                                                                           | 1 to 2 Organ systems<br>OR                                |              |
| Procedure-specific impediment§                                                                          | None                                                        | None                                                                                                  | Possible procedure-specific impediment                    |              |



#### hibitive Surgical Risk y 1 Criterion in This Column)

#### Predicted risk of death or major orbidity (all-cause) >50% at 1 y OR

2 Indices (moderate to severe) OR

#### $\geq$ 3 Organ systems OR

Severe procedure-specific impediment



## Table 8. Surgical Risk Assessment

\*Use of the STS Predicted Risk of Mortality (http://riskcalc.sts.org/stswebriskcalc/#/) to predict risk in a given institution with reasonable reliability is appropriate only if institutional outcomes are within 1 standard deviation of the STS average observed/expected mortality ratio for the procedure in question. The EUROSCORE II risk calculator may also be considered for use and is available at http://www.euroscore.org/calc.html.

<sup>†</sup>Seven frailty indices: Katz Activities of Daily Living (independence in feeding, bathing, dressing, transferring, toileting, and urinary continence) plus independence in ambulation (no walking aid or assistance required, or completion of a 5-m walk in <6 s). Other scoring systems can be applied to calculate no, mild, or moderate to severe frailty.

‡Examples of major organ system compromise include cardiac dysfunction (severe LV systolic or diastolic dysfunction or RV dysfunction, fixed pulmonary hypertension); kidney dysfunction (chronic kidney disease, stage 3 or worse); pulmonary dysfunction (FEV<sub>1</sub> <50% or D<sub>LCO2</sub> <50% of predicted); central nervous system dysfunction (dementia, Alzheimer's disease, Parkinson's disease, cerebrovascular accident with persistent physical limitation); gastrointestinal dysfunction (Crohn's disease, ulcerative colitis, nutritional impairment, or serum albumin <3.0); cancer (active malignancy); and liver dysfunction (any history of cirrhosis, variceal bleeding, or elevated INR in the absence of VKA therapy).

§Examples of procedure-specific impediments include presence of tracheostomy, heavily calcified (porcelain) ascending aorta, chest malformation, arterial coronary graft adherent to posterior chest wall, and radiation damage.







Table 9. Examples of Procedure-Specific Risk Factors for Interventions Not Incorporated Into Existing Risk Scores

| SAVR                                                                  | TAVI                                                                                                                                                                                                                                                                                              | Surgical MV Repair or<br>Replacement                                                                                                     |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Technical or anatomic</b>                                          |                                                                                                                                                                                                                                                                                                   |                                                                                                                                          |
| • Prior mediastinal radiation                                         | <ul> <li>Aorto-iliac occlusive<br/>disease precluding<br/>transfemoral approach</li> </ul>                                                                                                                                                                                                        | • Prior sternotomy                                                                                                                       |
| • Ascending aortic calcification (porcelain aorta may be prohibitive) | <ul> <li>Aortic arch atherosclerosis<br/>(protuberant lesions)</li> <li>Severe MR or TR</li> <li>Low-lying coronary arteries</li> <li>Basal septal hypertrophy</li> <li>Valve morphology (e.g.,<br/>bicuspid or unicuspid valve)</li> <li>Extensive LV outflow tract<br/>calcification</li> </ul> | <ul> <li>Prior mediastinal<br/>radiation</li> <li>Ascending aortic<br/>calcification (porcelain<br/>aorta may be prohibitive)</li> </ul> |



#### Transcatheter Edgeto-Edge Mitral Valve Repair

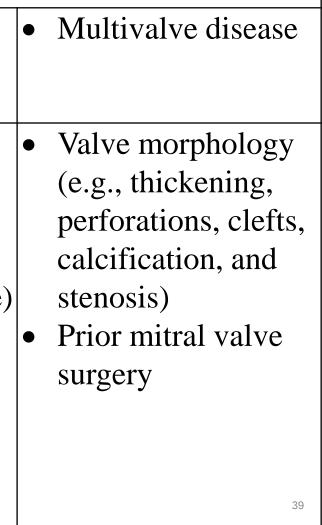





Table 9. Examples of Procedure-Specific Risk Factors for Interventions Not Incorporated Into Existing Risk Scores

| SAVR                                                                                                                                                                     | TAVI                                                                                                                                                                                     | Surgical MV Repair or<br>Replacement                                                                                                      | Transcatheter<br>Edge-to-Edge<br>Mitral Valve<br>Repair                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Comorbidities                                                                                                                                                            |                                                                                                                                                                                          |                                                                                                                                           |                                                                                                                     |
| <ul> <li>Severe COPD or home<br/>oxygen therapy</li> <li>Pulmonary hypertension</li> <li>Severe RV dysfunction</li> <li>Hepatic dysfunction</li> <li>Frailty*</li> </ul> | <ul> <li>Severe COPD or<br/>home oxygen<br/>therapy</li> <li>Pulmonary<br/>hypertension</li> <li>Severe RV<br/>dysfunction</li> <li>Hepatic<br/>dysfunction</li> <li>Frailty*</li> </ul> | <ul> <li>Severe COPD or home<br/>oxygen therapy</li> <li>Pulmonary hypertension</li> <li>Hepatic dysfunction</li> <li>Frailty*</li> </ul> | <list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item> |







Table 9. Examples of Procedure-Specific Risk Factors for Interventions Not Incorporated Into Existing Risk Scores

|--|

### Futility

- STS score >15
- Life expectancy <1 y
- Poor candidate for rehabilitation

- STS score >15
- Life expectancy <1
  - У
- Poor
   candidate for
   rehabilitation

- STS score >15
- Life expectancy <1 y
- Poor candidate for rehabilitation
- •

 $\bullet$ 

- •

### anscatheter Edge-Edge Mitral Valve Repair

### STS score >15 Life expectancy <1 y Poor candidate for rehabilitation



## Table 10. Median Operative Mortality Rates for Specific Surgical Procedures (STS Adult Cardiac Surgery Database, 2019)

| Procedure                                                    | Mortality Rate (%) |
|--------------------------------------------------------------|--------------------|
| AVR                                                          | 2.2                |
| AVR and CABG                                                 | 4                  |
| AVR and m <del>M</del> itral v <del>V</del> alve replacement | 9                  |
| Mitral vValve replacement                                    | 5                  |
| Mitral v <del>V</del> alve replacement and CABG              | 9                  |
| Mitral v <del>V</del> alve repair                            | 1                  |
| Mitral v <del>V</del> alve repair and CABG                   | 5                  |







### The Multidisciplinary Heart Valve Team and Heart Valve Centers

| COR        | LOE  | Recommendations                                                                                                                                                                                                                                                                      |
|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | С-ЕО | 1. Patients with severe VHD should be evaluated by<br>Heart Valve Team (MDT) when intervention is conside                                                                                                                                                                            |
| <b>2</b> a | C-LD | 2. Consultation with or referral to a Primary or Compre<br>Center is reasonable when treatment options are be<br>asymptomatic patients with severe VHD, 2) patients w<br>valve repair versus valve replacement, or 3) pat<br>comorbidities for whom valve intervention is considered |



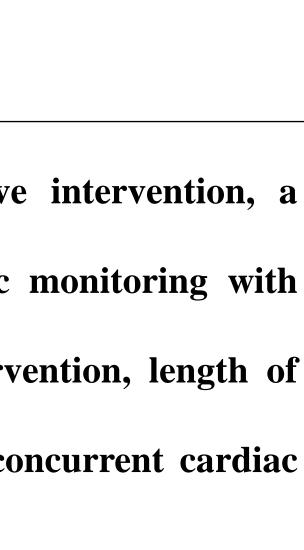
# y a Multidisciplinary lered. rehensive Heart Valve eing discussed for 1) who may benefit from itients with multiple





## PLACEHOLDER Table 11. Structure of Primary and Comprehensive Valve Centers








| COR | LOE  | Recommendation                                                                                                                                                                                                                    |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-EO | 1. In asymptomatic patients with any type of valve<br>baseline postprocedural TTE followed by periodic<br>TTE is recommended, depending on type of interv<br>time since intervention, ventricular function, and co<br>conditions. |









## Table 12. Timing of Periodic Imaging After Valve Intervention

Footnote text located on the next slide

| Valve Intervention                  | Minimal Imaging Frequency†                                    | Loc                      |
|-------------------------------------|---------------------------------------------------------------|--------------------------|
| Mechanical valve (surgical)         | Baseline                                                      | Primary Valve Center     |
| Bioprosthetic valve (surgical)      | Baseline, 5 and 10 y after surgery,‡ and then annually        | Primary Valve Center     |
| Bioprosthetic valve (transcatheter) | Baseline and then annually                                    | Primary Valve Center     |
| Mitral valve repair (surgical)      | Baseline, 1 y, and then every 2 to 3 y                        | Primary Valve Center     |
| Mitral valve repair (transcatheter) | Baseline and then annually                                    | Comprehensive Valve Cent |
| Bicuspid aortic valve disease       | Continued post-AVR monitoring of aortic size if               | Primary Valve Center     |
|                                     | a ortic diameter is $\geq$ 4.0 cm at time of AVR, as detailed |                          |
|                                     | in Section 5.1                                                |                          |





| cation |      |         |
|--------|------|---------|
|        |      |         |
|        | <br> |         |
|        |      |         |
|        |      |         |
|        |      |         |
| ter    |      |         |
|        | <br> |         |
|        |      |         |
|        |      |         |
|        |      | . • • • |
|        |      | 46      |



## Table 12. Timing of Periodic Imaging **After Valve Intervention**

\*Initial postprocedural TTE is recommended for all patients, ideally 1 to 3 months after the procedure. Annual clinical follow-up is recommended annually for all patients after value intervention at a Primary or Comprehensive Value Center. <sup>†</sup>Repeat imaging is appropriate at shorter follow-up intervals for changing signs or symptoms, during pregnancy, and to monitor residual or concurrent cardiac dysfunction.

<sup>‡</sup>Imaging may be done more frequently in patients with bioprosthetic surgical values if there are risk factors for early valve degeneration (e.g., younger age, renal failure, diabetes).







## **Aortic Stenosis**





## Table 13. Stages of Valvular Aortic Stenosis

| Stage | Definition     | Valve Anatomy                                                                                                                                                                                                                            | Valve Hemodynamics                                                                                                                                                                              | Hemodynamic<br>Consequences                                                                        | Symptoms   |
|-------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------|
| A     | At risk of AS  | <ul> <li>BAV (or other congenital valve anomaly)</li> <li>Aortic valve sclerosis</li> </ul>                                                                                                                                              | Aortic V <sub>max</sub> <2 m/s<br>with normal leaflet<br>motion                                                                                                                                 | None                                                                                               | None       |
| В     | Progressive AS | <ul> <li>Mild to moderate<br/>leaflet<br/>calcification/fibrosis of<br/>a bicuspid or trileaflet<br/>valve with some<br/>reduction in systolic<br/>motion or</li> <li>Rheumatic valve<br/>changes with<br/>commissural fusion</li> </ul> | <ul> <li>Mild AS: aortic<br/>V<sub>max</sub> 2.0–2.9 m/s or<br/>mean ΔP &lt;20 mm<br/>Hg</li> <li>Moderate AS: aortic<br/>V<sub>max</sub> 3.0–3.9 m/s or<br/>mean ΔP 20-39 mm<br/>Hg</li> </ul> | <ul> <li>Early LV<br/>diastolic<br/>dysfunction<br/>may be present</li> <li>Normal LVEF</li> </ul> | None<br>49 |







## Table 13. Stages of Valvular Aortic Stenosis

| Stage   | Definition   | Valve Anatomy                                                                                                   |   | Valve Hemodynamics                                                                                                                                                                                                                                                                         | Hemodynamic<br>Consequences                                                                            | Symptoms                                                                                   |
|---------|--------------|-----------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| C: Asym | ptomatic Sev | ere AS                                                                                                          |   |                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                                            |
| C1      |              | Severe leaflet<br>calcification/ fibrosis or<br>congenital stenosis with<br>severely reduced leaflet<br>opening | • | Aortic $V_{max} \ge 4$ m/s or<br>mean $\Delta P \ge 40$ mm Hg<br>AVA typically is $\le 1.0$ cm <sup>2</sup><br>(or AVAi 0.6 cm <sup>2</sup> /m <sup>2</sup> ) but<br>not required to define<br>severe AS<br>Very severe AS is an<br>aortic $V_{max} \ge 5$ m/s or<br>mean P $\ge 60$ mm Hg | <ul> <li>LV diastolic<br/>dysfunction</li> <li>Mild LV<br/>hypertrophy</li> <li>Normal LVEF</li> </ul> | <ul> <li>None</li> <li>Exercise testing is reasonable to confirm symptom status</li> </ul> |
| C2      | tic severe   | calcification/fibrosis or<br>congenital stenosis with<br>severely reduced leaflet                               | • | Aortic $V_{max} \ge 4 \text{ m/s or}$<br>mean $\Delta P \ge 40 \text{ mm Hg}$<br>AVA typically $\le 1.0 \text{ cm}^2$<br>(or AVAi 0.6 cm <sup>2</sup> /m <sup>2</sup> ) but<br>not required to define<br>severe AS                                                                         | LVEF <50%                                                                                              | None<br>50                                                                                 |



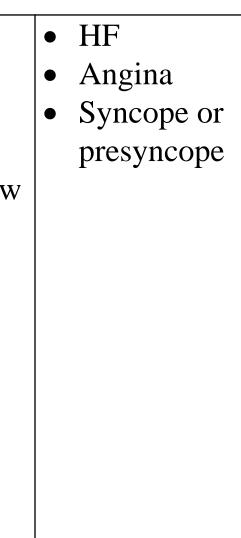


## Table 13. Stages of Valvular Aortic Stenosis

| Stage   | Definition                                                                            | Valve Anatomy                                                                                                      | Valve Hemodynamics                                                                                                                                                                                                                          | Hemodynamic<br>Consequences                                                                                                     |   |
|---------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---|
| D: Symp | otomatic seve                                                                         | re AS                                                                                                              | I                                                                                                                                                                                                                                           |                                                                                                                                 |   |
| D1      | Symptoma<br>tic severe<br>high-<br>gradient<br>AS                                     | Severe leaflet<br>calcification/fibros<br>is or congenital<br>stenosis with<br>severely reduced<br>leaflet opening | <ul> <li>Aortic V<sub>max</sub> ≥4 m/s or mean ΔP ≥40 mm Hg</li> <li>AVA typically ≤1.0 cm<sup>2</sup> (or AVAi ≤ 0.6 cm<sup>2</sup>/m<sup>2</sup>) but may be larger with mixed AS/AR</li> </ul>                                           | <ul> <li>LV diastolic<br/>dysfunction</li> <li>LV hypertrophy</li> <li>Pulmonary<br/>hypertension<br/>may be present</li> </ul> | • |
| D2      | Symptoma<br>tic severe<br>low-flow,<br>low-<br>gradient<br>AS with<br>reduced<br>LVEF | Severe leaflet<br>calcification/fibros<br>is with severely<br>reduced leaflet<br>motion                            | <ul> <li>AVA ≤1.0 cm<sup>2</sup> with resting aortic V<sub>max</sub> &lt;4 m/s or mean ΔP &lt;40 mm Hg</li> <li>Dobutamine stress echocardiography shows AVA &lt;1.0 cm<sup>2</sup> with V<sub>max</sub> ≥4 m/s at any flow rate</li> </ul> | <ul> <li>LV diastolic<br/>dysfunction</li> <li>LV hypertrophy</li> <li>LVEF &lt;50%</li> </ul>                                  | • |



#### **Symptoms**


- Exertional dyspnea, decreased exercise tolerance, or HF
- Exertional angina
- Exertional syncope or presyncope
- HF
- Angina
- Syncope or presyncope



| Stage  | Definition                                                                         | Valve Anatomy                                                                                      | Valve Hemodynamics                                                                                                                                                                                                                   | Hemodynamic<br>Consequences                                                                                                                    |
|--------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| D: Sym | ptomatic sev<br>Symptom<br>atic<br>severe<br>low-<br>gradient<br>AS with<br>normal | vere AS<br>Severe leaflet<br>calcification/fibros<br>is with severely<br>reduced leaflet<br>motion | • AVA $\leq 1.0 \text{ cm}^2$ (indexed<br>AVA $\leq 0.6 \text{ cm}^2/\text{m}^2$ ) with<br>an aortic V <sub>max</sub> $< 4 \text{ m/s or}$<br>mean $\Delta P < 40 \text{ mm Hg}$<br>AND<br>Stroke volume index $< 35 \text{ mL/m}^2$ | <ul> <li>Increased LV<br/>relative wall<br/>thickness</li> <li>Small LV<br/>chamber with low<br/>stroke volume</li> <li>Restrictive</li> </ul> |
|        | LVEF or<br>paradoxic<br>al low-<br>flow<br>severe AS                               |                                                                                                    | <ul> <li>Measured when patient is<br/>normotensive (systolic<br/>blood pressure &lt;140 mm<br/>Hg)</li> </ul>                                                                                                                        | <ul> <li>diastolic filling</li> <li>LVEF ≥50%</li> </ul>                                                                                       |



### Symptoms





| COR | LOE         | Recommendations                                                                                                                                                                                                           |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | A           | 1. In patients with signs or symptoms of AS or a BAV, TTE is indic<br>diagnosis of the cause of AS, assessment of hemodynamic severi<br>LV size and systolic function, and determination of prognosis ar<br>intervention. |
| 1   | <b>B-NR</b> | 2. In patients with suspected low-flow, low-gradient severe AS with<br>(Stage D3), optimization of blood pressure control is recomment<br>measurement of AS severity by TTE, TEE, cardiac catheterization                 |



#### icated for accurate

#### rity, measurement of

#### and timing of valve

#### th normal LVEF

#### nded before

#### tion, or CMR.



## Diagnosis and Follow-up: Iinitial D<del>d</del>iagnosis of AS

| COR        | LOE         | Recommendations                                                                                                                                                                                           |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | B-NR        | 3. In patients with suspected low-flow, low-gradient severe AS (Stage D2), low-dose dobutamine stress testing with echocard hemodynamic measurements is reasonable to further define contractile reserve. |
| <b>2</b> a | <b>B-NR</b> | 4. In patients with suspected low-flow, low-gradient severe AS wind LVEF (Stages D2 and D3), calculation of the ratio of the or velocity is reasonable to further define severity.                        |



# S with reduced LVEF diographic or invasive ne severity and assess vith normal or reduced outflow tract to aortic



## Diagnosis and Follow-up: Iinitial D<del>d</del>iagnosis of AS

|            | LOE         | Decommondations                               |
|------------|-------------|-----------------------------------------------|
| COR        | LUL         | Recommendations                               |
| <b>2</b> a | <b>B-NR</b> | 5. In patients with suspected low-flow, low-g |
|            |             | AS with normal or reduced LVEF (Stages        |
|            |             | measurement of aortic valve calcium scor      |
|            |             | imaging is reasonable to further define se    |



# gradient severe s D2 and D3), re by CT everity.



| COR            | LOE         | Recommendations                                                                                                                                                             |
|----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a     | <b>B-NR</b> | 1. In asymptomatic patients with severe AS (Stage C1),<br>reasonable to assess physiological changes with exercise<br>absence of symptoms.                                  |
| <b>3: Harm</b> | B-NR        | 2. In symptomatic patients with severe AS (Stage D1, aortic<br>mean pressure gradient ≥40 mm Hg), exercise testi<br>performed because of the risk of severe hemodynamic com |





# , exercise testing is and to confirm the c velocity $\geq$ 4.0 m/s or ting should not be mpromise.



## Medical Therapy of Patients with AS

| COR | LOE         | Recommendations                                                                                                                                                                                                             |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | <b>1. In patients at risk of developing AS (Stage A) and</b><br>asymptomatic AS (Stages B and C), hypertension<br>according to standard GDMT, started at a low do<br>titrated upward as needed, with appropriate clinical m |
| 1   | A           | 2. In all patients with calcific AS, statin therapy is indiand secondary prevention of atherosclerosis on the basis score.                                                                                                  |

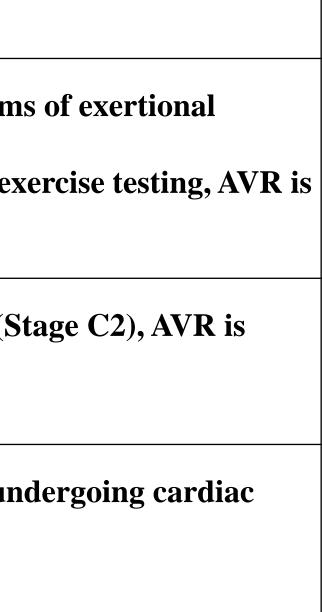


# ad in patients with should be treated ose, and gradually nonitoring. licated for primary



| COR              | LOE | Recommendations                                                                                                                                |
|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------|
| 2b               | B-R | 3. In patients who have undergone TAVI, responsively system blocker therapy (ACE inhibitor or considered to reduce the long-term risk of all-o |
| 3: No<br>Benefit | A   | 4. In patients with calcific AS (Stages B and C),<br>not indicated for prevention of hemodynamic<br>AS.                                        |




# renin-angiotensin r ARB) may be -cause mortality. statin therapy is ic progression of



## Timing of Intervention of AS

| COR | LOE  | Recommendations                                                  |
|-----|------|------------------------------------------------------------------|
|     |      | 1. In adults with severe high-gradient AS (Stage D1) and symptom |
| 1   | Α    | dyspnea, HF, angina, syncope, or presyncope by history or on ex  |
|     |      | indicated.                                                       |
|     |      | 2. In asymptomatic patients with severe AS and an LVEF <50% (S   |
| 1   | B-NR | indicated.                                                       |
|     |      | 3. In asymptomatic patients with severe AS (Stage C1) who are un |
| 1   | B-NR | surgery for other indications, AVR is indicated.                 |







| COR | LOE         | Recommendations                                   |
|-----|-------------|---------------------------------------------------|
|     | <b>B-NR</b> | 4. In symptomatic patients with low-flow, low-gra |
| 1   |             | with reduced LVEF (Stage D2), AVR is recomm       |
| 1   | <b>B-NR</b> | 5. In symptomatic patients with low-flow, low-gra |
|     |             | with normal LVEF (Stage D3), AVR is recomm        |
|     |             | the most likely cause of symptoms.                |



# radient severe AS mended. radient severe AS



| COR        | LOE  | Recommendations                                                                                                                                                               |
|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a         | B-NR | 6. In apparently asymptomatic patients with severe AS (S<br>surgical risk, AVR is reasonable when an exercise test<br>decreased exercise tolerance (normalized for age and s  |
| <b>2</b> a | B-R  | systolic blood pressure of ≥10 mm Hg from baseline to<br>7. In asymptomatic patients with very severe AS (defined<br>velocity of ≥5 m/s) and low surgical risk, AVR is reason |



### (Stage C1) and low

#### demonstrates

### sex) or a fall in

#### o peak exercise.

#### ed as an aortic

#### onable.



| COR        | LOE         | Recommendations                                                                                                                                       |
|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 8. In apparently asymptomatic patients with sever<br>and low surgical risk, AVR is reasonable whe<br>type natriuretic peptide (BNP) level is >3 times |
| <b>2</b> a | <b>B-NR</b> | 9. In asymptomatic patients with high-gradient s<br>C1) and low surgical risk, AVR is reasona<br>testing shows an increase in aortic velocity ≥0.3    |



## ere AS (Stage C1) en the serum Bs normal.

## severe AS (Stage

## able when serial

### 3 m/s per year



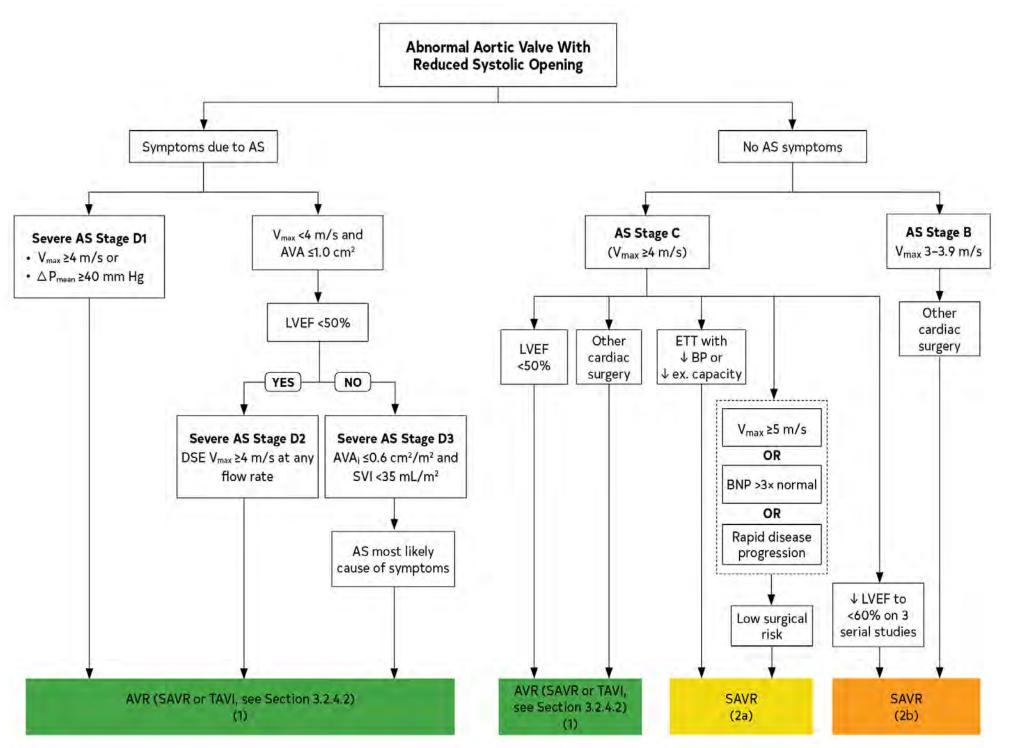
| COR       | LOE         | Recommendations                                                                                                                         |
|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <b>2b</b> | <b>B-NR</b> | 10. In asymptomatic patients with severe hig<br>(Stage C1) and a progressive decrease in L<br>3 serial imaging studies to <60%, AVR may |
| <b>2b</b> | C-EO        | 11. In patients with moderate AS (Stage B) who<br>undergoing cardiac surgery for other indic<br>may be considered.                      |



# igh-gradient AS LVEF on at least y be considered. to are

## cations, AVR




## Figure 2. Timing of Intervention for AS

Colors correspond to Table 2.

Arrows show the decision pathways that result in a recommendation for AVR.

Periodic monitoring is indicated for all patients in whom AVR is not yet indicated, including those with asymptomatic (Stage C) and symptomatic (Stage D) AS and those with low-gradient AS (Stage D2 or D3) who do not meet the criteria for intervention.

See Section 3.2.4 for choice of valve type (mechanical versus bioprosthetic [TAVIR or SAVR]) when AVR is indicated.





64



## Choice of Intervention: Mechanical Versus **Bioprosthetic AVR**

| COR | LOE  | Recommendations                                                                                                                                                                                                                                                                             |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-EO | 1. In patients with an indication for AVR, the choice of prosthetic val<br>a shared decision-making process that accounts for the patient's v<br>and includes discussion of the indications for and risks of anticoag<br>potential need for and risks associated with valve reintervention. |
| 1   | C-EO | 2. For patients of any age requiring AVR for whom VKA anti-<br>contraindicated, cannot be managed appropriately, or is not de<br>AVR is recommended.                                                                                                                                        |
| 2a  | B-R  | 3. For patients <50 years of age who do not have a contraindication require AVR, it is reasonable to choose a mechanical aort bioprosthetic valve.                                                                                                                                          |



## alve should be based on values and preferences

### gulant therapy and the

#### ticoagulant therapy is

#### lesired, a bioprosthetic

#### to anticoagulation and

#### tic prosthesis over a



## Choice of Intervention: Mechanical Versus **Bioprosthetic AVR**

| COR        | LOE         | Recommendation                                                                                                                                                                                                                                   |
|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 4. For patients 50 to 65 years of age who require AVR and<br>contraindication to anticoagulation, it is reasonable to indiv<br>either a mechanical or bioprosthetic AVR with consideration<br>factors and after informed shared decision-making. |
| <b>2</b> a | B-R         | 5. In patients >65 years of age who require AVR, it is rea<br>bioprosthesis over a mechanical valve.                                                                                                                                             |
| 2b         | B-NR        | 6. In patients <50 years of age who prefer a bioprosthetic AVR<br>anatomy, replacement of the aortic valve by a pulmonic<br>procedure) may be considered at a Comprehensive Valve Cente                                                          |





## d who do not have a vidualize the choice of n of individual patient easonable to choose a and have appropriate c autograft (the Ross ter.



## Choice of Intervention: SAVR Versus TAVI for Patients for Whom a Bioprosthetic AVR is Appropriate

| COR | LOE | Recommendations                                                                                                                                                                                                                                  |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | A   | 1. For symptomatic and asymptomatic patients with severe AS an AVR who are <65 years of age or have a life expectancy >20 ye recommended.                                                                                                        |
| 1   | A   | 2. For symptomatic patients with severe AS who are 65 to 80 yea<br>anatomic contraindication to transfemoral TAVI, either SAVR<br>TAVI is recommended after shared decision-making about the<br>expected patient longevity and valve durability. |
| 1   | A   | 3. For symptomatic patients with severe AS who are >80 years of<br>patients with a life expectancy <10 years and no anatomic con-<br>transfemoral TAVI, transfemoral TAVI is recommended in pre-                                                 |



## and any indication for vears, SAVR is

#### ars of age and have no

#### R or transfemoral

#### e balance between

#### of age or for younger

#### ntraindication to

#### reference to SAVR.



### Choice of Intervention: SAVR Versus TAVI for Patients for Whom a Bioprosthetic AVR is Appropriate

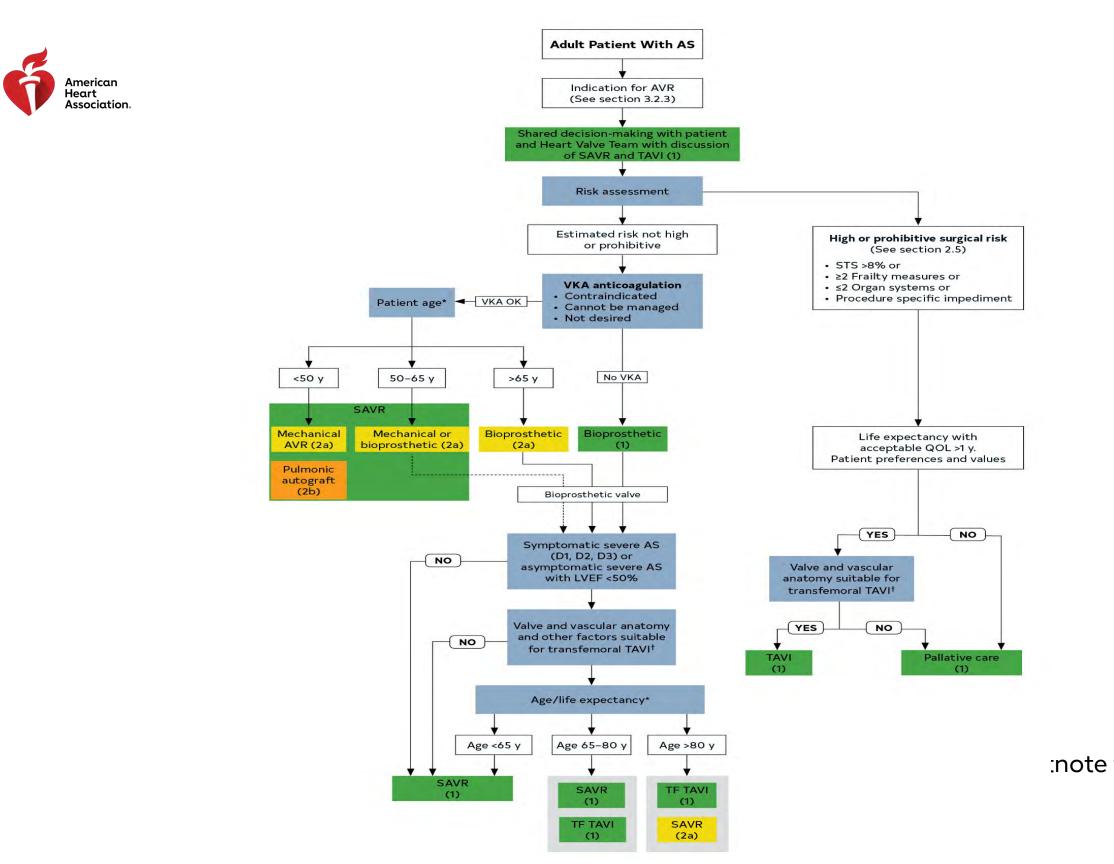
| COR | LOE         | Recommendation                                                                                                                                                                                                                   |  |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | <b>B-NR</b> | 4. In asymptomatic patients with severe AS and an LVEF <50% age and have no anatomic contraindication to transfemor between TAVI and SAVR should follow the same reconsymptomatic patients in Recommendations 1, 2, and 3 above. |  |
| 1   | B-NR        | 5. For asymptomatic patients with severe AS and an abnormal ex<br>severe AS, rapid progression, or an elevated BNP (COR 2a ind<br>SAVR is recommended in preference to TAVI.                                                     |  |
| 1   | A           | 6. For patients with an indication for AVR for whom a bioprosthe<br>but valve or vascular anatomy or other factors are not suitable<br>TAVI, SAVR is recommended.                                                                |  |



## ‰ who are ≤80 years of ral TAVI, the decision commendations as for exercise test, very dications for AVR), etic valve is preferred le for transfemoral



## **Choice of Intervention**


**SAVR Versus TAVI for Patients for Whom a Bioprosthetic AVR is Appropriate** 

| COR | LOE  | Recommendations                                                                                                                                                                                                                                 |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | A    | 7. For symptomatic patients of any age with severe AS and a surgical risk, TAVI is recommended if predicted post-TA months with an acceptable quality of life.                                                                                  |
| 1   | C-EO | 8. For symptomatic patients with severe AS for whom predicte<br>SAVR survival is <12 months or for whom minimal impro<br>life is expected, palliative care is recommended after shar<br>including discussion of patient preferences and values. |
| 2b  | C-EO | 9. In critically ill patients with severe AS, percutaneous aortic be considered as a bridge to SAVR or TAVI.                                                                                                                                    |



## a high or prohibitive **FAVI** survival is >12 ed post-TAVI or postovement in quality of ared decision-making,

#### balloon dilation may





#### Figure 3. Choice of SAVR versus TAVI when AVR is indicated for valvular AS.

Colors correspond to Table 2

:note text located on the next slide





\*Approximate ages, based on U.S. Actuarial Life Expectancy tables, are provided for guidance.

The balance between expected patient longevity and valve durability varies continuously across the age range, with more durable valves preferred for patients with a longer life expectancy. Bioprosthetic valve durability is finite (with shorter durability for younger patients), whereas mechanical valves are very durable but require lifelong anticoagulation. Long-term (20-year) data on outcomes with surgical bioprosthetic valves are available; robust data on transcatheter bioprosthetic values extend to only 5 years, leading to uncertainty about longer-term outcomes. The decision about valve type should be individualized on the basis of patient-specific factors that might affect expected longevity.

<sup>†</sup>Placement of a transcatheter valve requires vascular anatomy that allows transfemoral delivery and the absence of a ortic root dilation that would require surgical replacement. Valvular anatomy must be suitable for placement of the specific prosthetic valve, including annulus size and shape, leaflet number and calcification, and coronary ostial height. See ACC Expert Consensus 71 Statement.





Table 14. A Simplified Framework With Examples of Factors Favoring SAVR, TAVI, or Palliation Instead of Aortic Valve Intervention

|                                | Favors SAVR                                                                                                                                                                     | <b>Favors TAVI</b>                                                                                                                                                             |                                                            |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Age/life expectancy*           | • Younger age/longer life expectancy                                                                                                                                            | • Older age/fewer expected remaining years of life                                                                                                                             | • L                                                        |
| Valve anatomy                  | <ul> <li>BAV</li> <li>Subaortic (LV outflow tract) calcification</li> <li>Rheumatic valve disease</li> <li>Small or large aortic annulus<sup>†</sup></li> </ul>                 | • Calcific AS of a trileaflet valve                                                                                                                                            |                                                            |
| Prosthetic valve<br>preference | <ul> <li>Mechanical or surgical<br/>bioprosthetic valve preferred</li> <li>Concern for patient–prosthesis<br/>mismatch (annular enlargement<br/>might be considered)</li> </ul> | <ul> <li>Bioprosthetic valve preferred</li> <li>Favorable ratio of life expectancy to valve durability</li> <li>TAVI provides larger valve area than same size SAVR</li> </ul> |                                                            |
| Concurrent cardiac conditions  | <ul> <li>Aortic dilation‡</li> <li>Severe primary MR</li> <li>Severe CAD requiring bypass grafting</li> <li>Septal hypertrophy requiring myectomy</li> <li>AF</li> </ul>        | • Severe calcification of the ascending aorta ("porcelain" aorta)                                                                                                              | <ul> <li>Ir</li> <li>sy</li> <li>So</li> <li>ar</li> </ul> |



#### **Favors Palliation**

#### Limited life expectancy

#### Irreversible severe LV systolic dysfunction Severe MR attributable to annular calcification



## Table 14. A Simplified Framework With Examples of Factors Favoring SAVR, TAVI, or Palliation Instead of Aortic Valve Intervention

|                                                             | Favors SAVR                                                                                                                                                         | Favors TAVI                                                                                                              | Favors Pa                                                                               |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Noncardiac conditions                                       |                                                                                                                                                                     | <ul> <li>Severe lung, liver, or renal disease</li> <li>Mobility issues (high procedural risk with sternotomy)</li> </ul> | <ul> <li>Sympton noncation</li> <li>Severation</li> <li>Moder of ≥2 distance</li> </ul> |
| Frailty                                                     | • Not frail or few frailty measures                                                                                                                                 | • Frailty likely to improve after TAVI                                                                                   | • Severe after T                                                                        |
| Estimated procedural or<br>surgical risk of SAVR or<br>TAVI | <ul> <li>SAVR risk low</li> <li>TAVI risk high</li> </ul>                                                                                                           | <ul> <li>TAVI risk low to medium</li> <li>SAVR risk high to prohibitive</li> </ul>                                       | • Prohit post-T                                                                         |
| Procedure-specific impediments                              | <ul> <li>Valve anatomy, annular size, or<br/>low coronary ostial height<br/>precludes TAVI</li> <li>Vascular access does not allow<br/>transfemoral TAVI</li> </ul> | <ul> <li>Previous cardiac surgery with<br/>at-risk coronary grafts</li> <li>Previous chest irradiation</li> </ul>        | <ul> <li>Valve<br/>corona<br/>TAVI</li> <li>Vascu<br/>transfe</li> </ul>                |



### Palliation

ptoms likely attributable to ardiac conditions re dementia erate to severe involvement other organ systems ere frailty unlikely to improve TAVI

ibitive SAVR risk (>15%) or TAVI life expectancy <1 y

e anatomy, annular size, or nary ostial height precludes

ular access does not allow femoral TAVI



## **Table 14. A Simplified Framework With Examples of Factors Favoring** SAVR, TAVI, or Palliation Instead of Aortic Valve Intervention

|                                                        | -                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                         |                                                                                                    |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                        | Favors SAVR                                                                                                                                                                                                                                                                                                                                                                 | Favors TAVI                                                                                                                                                                                                                                                                                             | F                                                                                                  |
| Goals of Care and<br>patient preferences<br>and values | <ul> <li>Less uncertainty about<br/>valve durability</li> <li>Avoid repeat intervention</li> <li>Lower risk of permanent<br/>pacer</li> <li>Life prolongation</li> <li>Symptom relief</li> <li>Improved long-term<br/>exercise capacity and QOL</li> <li>Avoid vascular<br/>complications</li> <li>Accepts longer hospital<br/>stay, pain in recovery<br/>period</li> </ul> | <ul> <li>Accepts uncertainty about valve durability and possible repeat intervention</li> <li>Higher risk of permanent pacer</li> <li>Life prolongation</li> <li>Symptom relief</li> <li>Improved exercise capacity and QOL</li> <li>Prefers shorter hospital stay, less postprocedural pain</li> </ul> | <ul> <li>Life jimpo</li> <li>Avoid diagriproce</li> <li>Avoid risk</li> <li>Avoid pacer</li> </ul> |





## **Favors Palliation**

- prolongation not an
- ortant goal
- oid futile or unnecessary
- nostic or therapeutic
- cedures
- oid procedural stroke

oid possibility of cardiac er



\*Expected remaining years of life can be estimated from U.S. Actuarial Life Expectancy tables. The balance between expected patient longevity and valve durability varies continuously across the age range, with more durable valves preferred for patients with a longer life expectancy. Bioprosthetic valve durability is finite (with shorter durability for younger patients), whereas mechanical valves are very durable but require lifelong anticoagulation. Long-term (20-y) data on outcomes with surgical bioprosthetic values are available; robust data on transcatheter bioprosthetic values extend only to 5 y, leading to uncertainty about longer-term outcomes. The decision about valve type should be individualized on the basis of patient-specific factors that might affect expected longevity.

<sup>†</sup>A large aortic annulus may not be suitable for currently available transcatheter valve sizes. With a small aortic annulus or aorta, a surgical annulus-enlarging procedure may be needed to allow placement of a larger prosthesis and avoid patient-prosthesis mismatch.

<sup>‡</sup>Dilation of the aortic sinuses or ascending aorta may require concurrent surgical replacement, particularly in younger patients with a BAV. Modified from Burke et al.







# **Aortic Regurgitation**





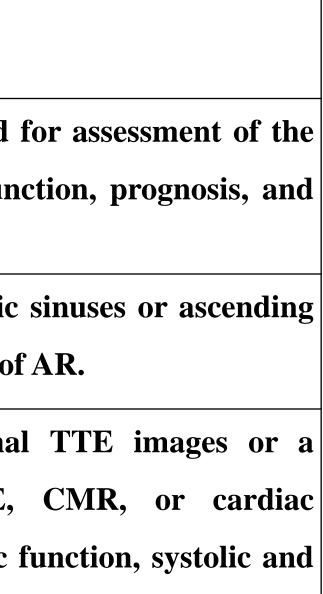
## Table 15. Stages of Chronic AR

| Stage | Definition     | Valve Anatomy                                                                                                                                                                                                                                       | Valve Hemodynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hemodynamic<br>Consequences                                                                   | Symptoms |
|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------|
| A     | At risk of AR  | <ul> <li>BAV (or other congenital valve<br/>anomaly)</li> <li>Aortic valve sclerosis</li> <li>Diseases of the aortic sinuses or<br/>ascending aorta</li> <li>History of rheumatic fever or known<br/>rheumatic heart disease</li> <li>IE</li> </ul> | AR severity: none or trace                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                                                                          | None     |
| В     | Progressive AR |                                                                                                                                                                                                                                                     | <ul> <li>Mild AR: <ul> <li>Jet width &lt;25% of LVOT</li> <li>Vena contracta &lt;0.3 cm</li> <li>Regurgitant volume &lt;30 mL/beat</li> <li>Regurgitant fraction &lt;30%</li> <li>ERO &lt;0.10 cm<sup>2</sup></li> <li>Angiography grade 1</li> </ul> </li> <li>Moderate AR: <ul> <li>Jet width 25%-64% of LVOT</li> <li>Vena contracta 0.3-0.6 cm</li> <li>Regurgitant fraction 30% to 49%</li> <li>ERO 0.10-0.29 cm<sup>2</sup></li> <li>Angiography grade 2</li> </ul> </li> </ul> | <ul> <li>Normal LV systolic function</li> <li>Normal LV volume or mild LV dilation</li> </ul> | • None   |





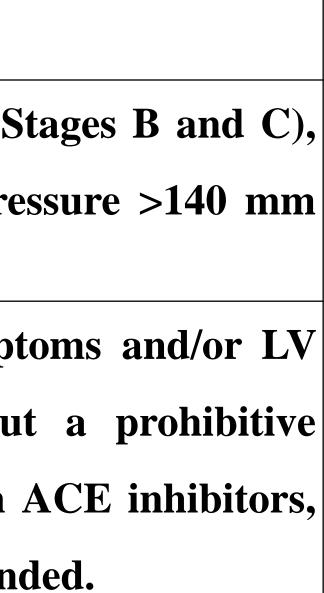
## Table 15. Stages of Chronic AR


| Stage | Definition                | Valve Anatomy                                                                                                                                                                                                                                                            | Valve Hemodynamics                                                                                                                                                                                                                                                                                                                                                                                                                     | Hemodynamic Consequences                                                                                                                                                                                                                                                            | Symptoms                                                                                        |
|-------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| С     | Asymptomatic<br>severe AR | <ul> <li>Calcific aortic valve<br/>disease</li> <li>Bicuspid valve (or other<br/>congenital abnormality)</li> <li>Dilated aortic sinuses or<br/>ascending aorta</li> <li>Rheumatic valve changes</li> <li>IE with abnormal leaflet<br/>closure or perforation</li> </ul> | <ul> <li>Severe AR:         <ul> <li>Jet width ≥65% of LVOT</li> <li>Vena contracta &gt;0.6 cm</li> <li>Holodiastolic flow reversal in the proximal abdominal aorta</li> <li>Regurgitant volume ≥60 mL/beat</li> <li>Regurgitant fraction ≥50%</li> <li>ERO ≥0.3 cm<sup>2</sup></li> <li>Angiography grade 3 to 4</li> <li>In addition, diagnosis of chronic severe AR requires evidence of LV dilation</li> </ul> </li> </ul>         | <ul> <li>C1: Normal LVEF (&gt;55%)<br/>and mild to moderate LV<br/>dilation (LVESD &lt;50 mm)</li> <li>C2: Abnormal LV systolic<br/>function with depressed<br/>LVEF (≤55%) or severe LV<br/>dilation (LVESD &gt;50 mm or<br/>indexed LVESD &gt;25<br/>mm/m<sup>2</sup>)</li> </ul> | None; exercise<br>testing is<br>reasonable to<br>confirm<br>symptom<br>status                   |
| D     | Symptomatic<br>severe AR  | <ul> <li>Calcific valve disease</li> <li>Bicuspid valve (or other congenital abnormality)</li> <li>Dilated aortic sinuses or ascending aorta</li> <li>Rheumatic valve changes</li> <li>Previous IE with abnormal leaflet closure or perforation</li> </ul>               | <ul> <li>Severe AR:         <ul> <li>Doppler jet width ≥65% of LVOT</li> <li>Vena contracta &gt;0.6 cm</li> <li>Holodiastolic flow reversal in the proximal abdominal aorta</li> <li>Regurgitant volume ≥60 mL/beat</li> <li>Regurgitant fraction ≥50%</li> <li>ERO ≥0.3 cm<sup>2</sup></li> <li>Angiography grade 3 to 4</li> <li>In addition, diagnosis of chronic severe AR requires evidence of LV dilation</li> </ul> </li> </ul> | <ul> <li>Symptomatic severe AR may occur with normal systolic function (LVEF &gt;55%), mild to moderate LV dysfunction (LVEF 40% to 55%), or severe LV dysfunction (LVEF &lt;40%)</li> <li>Moderate to severe LV dilation is present</li> </ul>                                     | <ul> <li>Exertional<br/>dyspnea or<br/>angina or<br/>more severe<br/>HF<br/>symptoms</li> </ul> |





| COR | LOE         | Recommendations                                                                                                                                                                                                                      |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 1. In patients with signs or symptoms of AR, TTE is indicated<br>cause and severity of regurgitation, LV size and systolic fun<br>timing of valve intervention.                                                                      |
| 1   | B-NR        | 2. In patients with a BAV or with known dilation of the aortic<br>aorta, TTE is indicated to evaluate the presence and severity of                                                                                                   |
| 1   | <b>B-NR</b> | 3. In patients with moderate or severe AR and suboptima<br>discrepancy between clinical and TTE findings, TEE,<br>catheterization is indicated for the assessment of LV systolic<br>diastolic volumes, aortic size, and AR severity. |








| COR | LOE         | Recommendations                                |
|-----|-------------|------------------------------------------------|
|     |             | 1. In asymptomatic patients with chronic AR (S |
| 1   | <b>B-NR</b> | treatment of hypertension (systolic blood pre  |
|     |             | Hg) is recommended.                            |
|     |             | 2. In patients with severe AR who have symp    |
|     |             | systolic dysfunction (Stages C2 and D) bu      |
| 1   | <b>B-NR</b> | surgical risk, GDMT for reduced LVEF with      |
|     |             | ARBs, and/or sacubitril/valsartan is recommen  |







## Timing of Intervention for Patients with Chronic AR

| COR        | LOE  | Recommendations                                                                                                                                                     |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | B-NR | 1. In symptomatic patients with severe AR (Stage D), a is indicated regardless of LV systolic function.                                                             |
| 1          | B-NR | 2. In asymptomatic patients with chronic severe AF dysfunction (LVEF ≤55%) (Stage C2), aortic valve si if no other cause for systolic dysfunction is identified.    |
| 1          | С-ЕО | <b>3.</b> In patients with severe AR (Stage C or D) who are u surgery for other indications, aortic valve surgery is in                                             |
| <b>2</b> a | B-NR | 4. In asymptomatic patients with severe AR and no function (LVEF >55%), aortic valve surgery is reason is severely enlarged (LVESD >50 mm or indexed LV (Stage C2). |



## aortic valve surgery

## **R** and LV systolic surgery is indicated

## undergoing cardiac indicated. normal LV systolic onable when the LV $VESD > 25 \text{ mm/m}^2$ )



## Timing of Intervention for Patients with Chronic AR

| COR        | LOE         | Recommendations                                                                                                                                                                                                                                                                                                              |
|------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | C-EO        | 5. In patients with moderate AR (Stage B) who are undergod surgery for other indications, aortic valve surgery is reasonable                                                                                                                                                                                                 |
| 2b         | <b>B-NR</b> | 6. In asymptomatic patients with severe AR and normal LV system<br>(LVEF >55%; Stage C1) and low surgical risk, aortic van<br>considered when there is a progressive decline in LVEF on at le<br>the low–normal range (LVEF 55% to 60%) or a progressive in<br>into the severe range (LV end-diastolic dimension [LVEDD] >65 |
| 3: Harm    | B-NR        | 7. In patients with isolated severe AR who have indications candidates for surgery, TAVI should not be performed.                                                                                                                                                                                                            |



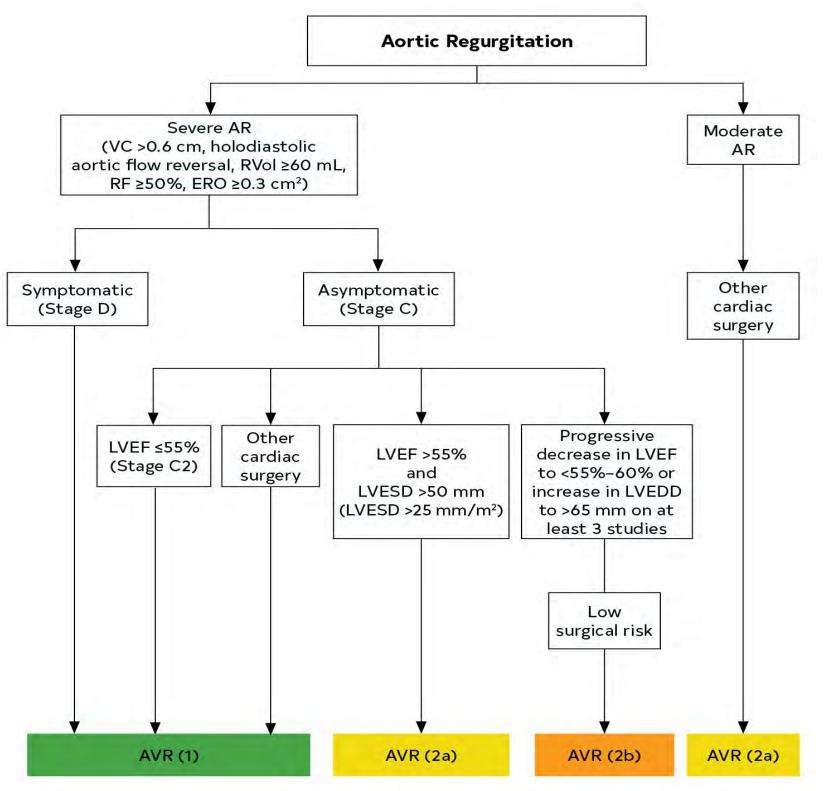
## oing cardiac or aortic le.

## ystolic function at rest

### alve surgery may be

## least 3 serial studies to

## increase in LV dilation


## 65 mm).

### s for SAVR and are



Figure 4. Timing of Intervention for Patients with AR.

Colors correspond to Table 2.





83



# **Bicuspid Aortic Valve**





| i   |             |                                                                                                                                                                                                                                                                     |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COR | LOE         | Recommendations                                                                                                                                                                                                                                                     |
| 1   | B-NR        | 1. In patients with a known BAV, TTE is indicated to evaluate value of a severity of AS and AR, assess the shape and diameter of and ascending aorta, and evaluate for the presence of aortic coardinates of clinical outcome and to determine timing of interview. |
| 1   | C-LD        | 2. In patients with BAV, CMR angiography or CT angiography is<br>morphology of the aortic sinuses, sinotubular junction, or ascen<br>assessed accurately or fully by echocardiography.                                                                              |
| 2b  | <b>B-NR</b> | 3. In first-degree relatives of patients with a known BAV, a screen<br>considered to look for the presence of a BAV or asymptomatic d<br>sinuses and ascending aorta.                                                                                               |





## lve morphology,

### of the aortic sinuses

## parctation for

### rvention

## s indicated when

### nding aorta cannot be

## ning TTE might be

## dilation of the aortic









## Diagnostic Testing: Routine Follow-Up of Patients with BAV

| COR        | LOE         | Recommendations                                                                                                                                                                                                                                                                                        |
|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | C-LD        | 1. In patients with BAV and a diameter of the aortic sinuses or as<br>cm, lifelong serial evaluation of the size and morphology of t<br>ascending aorta by echocardiography, CMR, or CT angiograph<br>the examination interval determined by the degree and rate of<br>dilation and by family history. |
| <b>2</b> a | <b>B-NR</b> | 2. In patients with a BAV who have undergone AVR, continued I imaging of the aorta is reasonable if the diameter of the aortic aorta is ≥4.0 cm.                                                                                                                                                       |



# ascending aorta of $\geq$ 4.0 the aortic sinuses and phy is reasonable, with of progression of aortic

## lifelong serial interval ic sinuses or ascending



# Intervention<del>s</del>: <del>Repair or</del> Replacement of the Aorta in Patients with BAV

| COR        | LOE         | Recommendations                                                                                                                                                                                                                                                                                                                          |
|------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | <b>B-NR</b> | 1. In asymptomatic or symptomatic patients with a BAV and a d<br>sinuses or ascending aorta >5.5 cm, operative intervention (<br>sinuses and/or the ascending aorta is recommended.                                                                                                                                                      |
| <b>2</b> a | <b>B-NR</b> | 2. In asymptomatic patients with a BAV, a diameter of the aortic<br>aorta of 5.0 to 5.5 cm, and an additional risk factor for di<br>history of aortic dissection, aortic growth rate >0.5 cm per yea<br>operative intervention to replace the aortic sinuses and/or th<br>reasonable if the surgery is performed at a Comprehensive Valv |



## diameter of the aortic to replace the aortic

## c sinuses or ascending

## lissection (e.g., family

### ar, aortic coarctation),

### the ascending aorta is

### lve Center.



# Intervention<del>s</del>: <del>Repair or</del> Replacement of the Aorta in Patients with BAV

| COR        | LOE  | Recommendations                                                                                                                                                                                                                                                                   |
|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | B-NR | 3. In patients with a BAV with indications for SAVR and a distinuses or ascending aorta ≥4.5 cm, replacement of the a ascending aorta is reasonable if the surgery is performed Valve Center.                                                                                     |
| 2b         | C-LD | 4. In patients with a BAV who meet criteria for replacement valve-sparing surgery may be considered if the surgery Comprehensive Valve Center.                                                                                                                                    |
| 2b         | B-NR | 5. In asymptomatic patients with a BAV who are at low s diameter of the aortic sinuses or ascending aorta of 5.0 to additional risk factors for dissection, operative intervention sinuses and/or the ascending aorta may be considered if the s at a Comprehensive Valve Center. |



## diameter of the aortic aortic sinuses and/or l at a Comprehensive

## of the aortic sinuses, y is performed at a

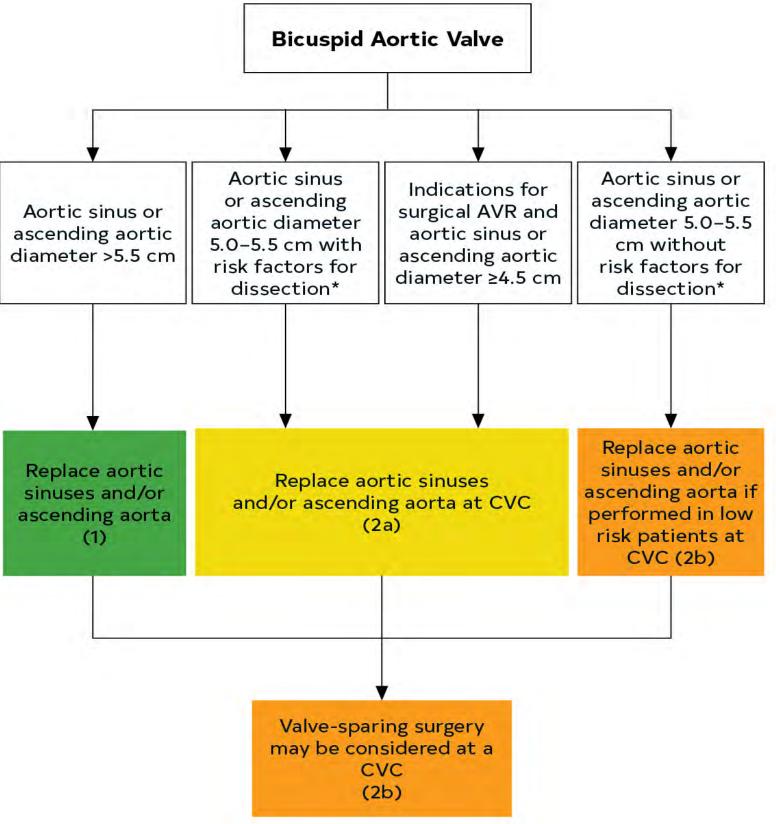

## surgical risk, have a 5.5 cm, and have no n to replace the aortic surgery is performed



Figure 6. Intervention for replacement of the aorta in patients with a BAV.

Colors correspond to Table 2.

\*Family history of aortic dissection, aortic growth rate  $\geq 0.5$ cm per year, and/or presence of aortic coarctation.









## Intervention<del>s</del>: Repair or Replacement of the Aortic Valve

| COR        | LOE         | Recommendations                                                                                                                                                                                                       |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> b | C-LD        | 1. In patients with BAV and severe AR who meet criter<br>valve repair may be considered in selected patients<br>performed at a Comprehensive Valve Center.                                                            |
| <b>2</b> b | <b>B-NR</b> | 2. In patients with BAV and symptomatic, severe A considered as an alternative to SAVR after considered specific procedural risks, values, trade-offs, and prefet the surgery is performed at a Comprehensive Valve C |



# eria for AVR, aortic ts if the surgery is AS, TAVI may be leration of patientferences, and when Center.



# **Mitral Stenosis**



## Table 16. Stages of MS



Footnote text located on the next slide

| Stage | Definition                | Valve Anatomy                                                                                                                                                                        | Valve Hemodynamics                                                                                                                                           | Hemodynamic                                                                                            | Symptoms                                                                                 |
|-------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| A     | At risk of MS             | Mild valve doming during diastole                                                                                                                                                    | Normal transmitral flow<br>velocity                                                                                                                          | Consequences<br>None                                                                                   | None                                                                                     |
| В     | Progressive MS            | <ul> <li>Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets</li> <li>Planimetered mitral valve area &gt;1.5 cm<sup>2</sup></li> </ul> | <ul> <li>Increased transmitral flow velocities</li> <li>Mitral valve area &gt;1.5 cm<sup>2</sup></li> <li>Diastolic pressure half-time &lt;150 ms</li> </ul> | <ul> <li>Mild to moderate LA<br/>enlargement</li> <li>Normal pulmonary<br/>pressure at rest</li> </ul> | None                                                                                     |
| С     | Asymptomatic<br>severe MS | <ul> <li>Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets</li> <li>Planimetered mitral valve area ≤1.5 cm<sup>2</sup></li> </ul>    | <ul> <li>Mitral valve area ≤1.5 cm<sup>2</sup></li> <li>Diastolic pressure half-time ≥150 ms</li> </ul>                                                      | <ul> <li>Severe LA<br/>enlargement</li> <li>Elevated PASP &gt;50<br/>mm Hg</li> </ul>                  | None                                                                                     |
| D     | Symptomatic<br>severe MS  | <ul> <li>Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets</li> <li>Planimetered mitral valve area ≤1.5 cm<sup>2</sup></li> </ul>    | <ul> <li>Mitral valve area ≤1.5 cm<sup>2</sup></li> <li>Diastolic pressure half-time ≥150 ms</li> </ul>                                                      | <ul> <li>Severe LA<br/>enlargement</li> <li>Elevated PASP &gt;50<br/>mm Hg</li> </ul>                  | <ul> <li>Decreased<br/>exercise<br/>tolerance</li> <li>Exertional<br/>dyspnea</li> </ul> |





The transmitral mean pressure gradient should be obtained to

further determine the hemodynamic effect of the MS and is usually

>5 mm Hg to 10 mm Hg in severe MS; however, because of the

variability of the mean pressure gradient with heart rate and

forward flow, it has not been included in the criteria for severity.









## Diagnostic Testing: Initial Diagnosis of Rheumatic MS

| COR | LOE         | Recommendations                                                                                                                                                                                                        |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 1. In patients with signs or symptoms of rheumatic MS,<br>to establish the diagnosis, quantify hemodynamic<br>concomitant valvular lesions, and demonstrate valve<br>determine suitability for mitral commissurotomy). |
| 1   | C-LD        | 2. In patients considered for percutaneous mitral balloor<br>commissurotomy (PMBC), TEE should be performed<br>presence or absence of LA thrombus and to evaluate the<br>MR.                                           |



# 5, TTE is indicated ic severity, assess

## ve morphology (to

### n

## l to assess the

## the severity of



## Diagnostic Testing: Exercise Testing in Patients with Rheumatic MS

| COR | LOE  | Recommendation                                                                                                                                                                                                                                                                       |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-LD | 1. In patients with rheumatic MS and a discre-<br>resting echocardiographic findings and clin<br>exercise testing with Doppler or invasive<br>assessment is recommended to evaluate<br>response, exercise capacity, and the respons<br>mitral gradient and pulmonary artery pressure |





# repancy between nical symptoms, e hemodynamic symptomatic e se of the mean

**:e.** 



| COR        | LOE  | Recommendations                                                                                                                                 |
|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | C-LD | <ol> <li>In patients with rheumatic MS and 1) AF, 2) a prior</li> <li>3) an LA thrombus, anticoagulation with a VKA is in</li> </ol>            |
| <b>2</b> a | C-LD | 2. In patients with rheumatic MS and AF with a response, heart rate control can be beneficial.                                                  |
| <b>2</b> a | A    | 3. In patients with rheumatic MS in normal sin<br>symptomatic resting or exertional sinus tachycardia,<br>can be beneficial to manage symptoms. |





# or embolic event, or ndicated. rapid ventricular nus rhythm with , heart rate control



| COR | LOE         | Recommendations                                                                                                                                                                                                                                                                                       |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | A           | <ol> <li>In symptomatic patients (NYHA class II, III, or IV) with severe<br/>(mitral valve area ≤1.5 cm<sup>2</sup>, Stage D) and favorable valve morp<br/>moderate (2+) MR* in the absence of LA thrombus, PMBC is re<br/>be performed at a Comprehensive Valve Center.</li> </ol>                   |
| 1   | <b>B-NR</b> | 2. In severely symptomatic patients (NYHA class III or IV) with s (mitral valve area ≤1.5 cm <sup>2</sup> , Stage D) who 1) are not candidates failed a previous PMBC, 3) require other cardiac procedures, o access to PMBC, mitral valve surgery (repair, commissurotomy replacement) is indicated. |

\*2+ on a 0 - 4+ scale according to Sellar's criteria or less than  $\leq$  moderate by Doppler Echo



### e rheumatic MS

## phology with less than

## recommended if it can

### severe rheumatic MS

## s for PMBC, 2) have

### or 4) do not have

### y, or valve



| COR        | LOE         | Recommendations                                                                                                                                                                                                                                                                                                    |
|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 3. In asymptomatic patients with severe rheumati<br>valve area ≤1.5 cm <sup>2</sup> , Stage C) and favorable val<br>with less than 2+ MR* in the absence of LA thro<br>have elevated pulmonary pressures (pulmonary<br>pressure >50 mm Hg), PMBC is reasonable if it<br>performed at a Comprehensive Valve Center. |

\*2+ on a 0 - 4+ scale according to Sellar's criteria or less than  $\leq$  moderate by Doppler Echo





# tic MS (mitral lve morphology rombus who y artery systolic t can be

## Intervention – Patients with Rheumatic MS



\*2+ on a 0 - 4+ scale according to Sellar's criteria or < moderate by Doppler Echo

| COR | LOE  | Recommendations                                                                                                                                                                                                                                                                                               |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2b  | C-LD | 4. In asymptomatic patients with severe rheumatic MS (mitral valve area<br>favorable valve morphology with less than 2+/ MR* in the absence of LA<br>onset of AF, PMBC may be considered if it can be performed at a Comprehe                                                                                 |
| 2b  | C-LD | 5. In symptomatic patients (NYHA class II, III, or IV) with rheumatic MS and cm <sup>2</sup> , if there is evidence of hemodynamically significant rheumatic MS on artery wedge pressure >25 mm Hg or a mean mitral valve gradient >15 PMBC may be considered if it can be performed at a Comprehensive Valve |
| 2b  | B-NR | 6. In severely symptomatic patients (NYHA class III or IV) with severe rheum ≤1.5 cm <sup>2</sup> , Stage D) who have a suboptimal valve anatomy and who are not are at high risk for surgery, PMBC may be considered if it can be perfor Valve Center.                                                       |





## ea ≤1.5 cm<sup>2</sup>, Stage C) and A thrombus who have new hensive Valve Center.

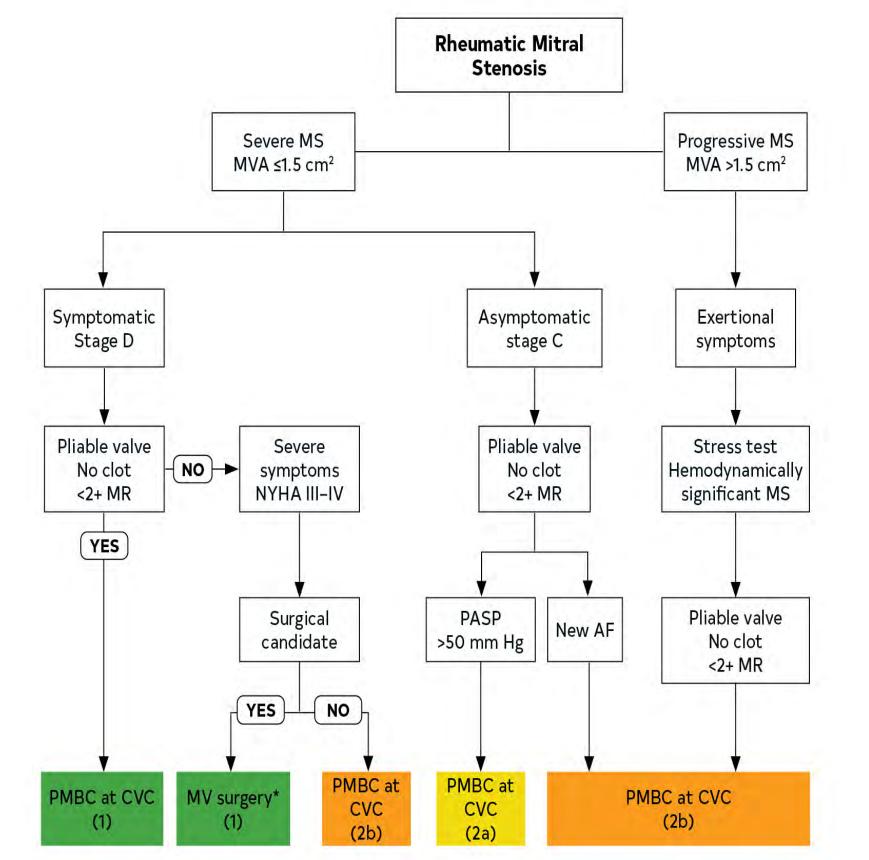

- nd an mitral valve area >1.5
- n the basis of a pulmonary
- 5 mm Hg during exercise,
- e Center.
- natic MS (mitral valve area
- ot candidates for surgery or
- ormed at a Comprehensive



Figure 7. Intervention for Patients with MS.

Colors correspond to Table 2.

\*Repair, commissurotomy, or valve replacement.







## Nonrheumatic Calcific MS



| COR        | LOE  | Recommendation                                                                                                                                                                                                                                             |
|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> b | C-LD | 1. In severely symptomatic patients (NYHA cl<br>with severe MS (mitral valve area ≤1.5 d<br>attributable to extensive mitral annular calc<br>intervention may be considered only after di<br>high procedural risk and the individual patier<br>and values. |



# class III or IV) cm<sup>2</sup>, Stage D) cification, valve liscussion of the ent's preferences



# **Mitral Regurgitation**





## Table 17. Stages of Chronic Primary MR

| Grade | Definition        | Valve Anatomy                                                                                                                        | Valve Hemodynamics*                                                                                                                                                                                                                                                                      | Hemodynamic<br>Consequences                                                                                           | Symptoms |
|-------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------|
| A     | At risk of MR     | <ul> <li>Mild mitral valve prolapse<br/>with normal coaptation</li> <li>Mild valve thickening and<br/>leaflet restriction</li> </ul> | <ul> <li>No MR jet or small central jet area &lt;20% LA on Doppler</li> <li>Small vena contracta &lt;0.3 cm</li> </ul>                                                                                                                                                                   | • None                                                                                                                | None     |
| В     | Progressive<br>MR | valve prolapse with<br>normal coaptation                                                                                             | <ul> <li>Central jet MR 20%–40%<br/>LA or late systolic<br/>eccentric jet MR</li> <li>Vena contracta &lt;0.7 cm</li> <li>Regurgitant volume &lt;60<br/>mL</li> <li>Regurgitant fraction &lt;50%</li> <li>ERO &lt;0.40 cm<sup>2</sup></li> <li>Angiographic grade 1+ to<br/>2+</li> </ul> | <ul> <li>Mild LA<br/>enlargement</li> <li>No LV<br/>enlargement</li> <li>Normal<br/>pulmonary<br/>pressure</li> </ul> | None     |







## Table 17. Stages of Chronic Primary MR

Footnote text located on the next slide

| Grade | Definition                | Valve Anatomy                                                                                                                                                                                                                                                                         | Valve Hemodynamics*                                                                                                                                                                                                                                                         | Hemodynamic<br>Consequences                                                                                                   | Symptoms                                                                                 |
|-------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| С     | Asymptomatic severe<br>MR | <ul> <li>Severe mitral valve prolapse<br/>with loss of coaptation or flail<br/>leaflet</li> <li>Rheumatic valve changes<br/>with leaflet restriction and<br/>loss of central coaptation</li> <li>Prior IE</li> <li>Thickening of leaflets with<br/>radiation heart disease</li> </ul> | <ul> <li>Central jet MR &gt;40% LA<br/>or holosystolic eccentric jet<br/>MR</li> <li>Vena contracta ≥0.7 cm</li> <li>Regurgitant volume ≥60<br/>mL</li> <li>Regurgitant fraction ≥50%</li> <li>ERO ≥0.40 cm<sup>2</sup></li> <li>Angiographic grade 3+ to<br/>4+</li> </ul> | <ul> <li>LV enlargement</li> <li>Pulmonary hypertension<br/>may be present at rest or<br/>with exercise</li> </ul>            | • None                                                                                   |
| D     | Symptomatic severe<br>MR  | <ul> <li>Severe mitral valve prolapse<br/>with loss of coaptation or flail<br/>leaflet</li> <li>Rheumatic valve changes<br/>with leaflet restriction and<br/>loss of central coaptation</li> <li>Prior IE</li> <li>Thickening of leaflets with<br/>radiation heart disease</li> </ul> | <ul> <li>Central jet MR &gt;40% LA<br/>or holosystolic eccentric jet<br/>MR</li> <li>Vena contracta ≥0.7 cm</li> <li>Regurgitant volume ≥60<br/>mL</li> <li>Regurgitant fraction ≥50%</li> <li>ERO ≥0.40 cm<sup>2</sup></li> <li>Angiographic grade 3+ to<br/>4+</li> </ul> | <ul> <li>Moderate or severe LA<br/>enlargement</li> <li>LV enlargement</li> <li>Pulmonary hypertension<br/>present</li> </ul> | <ul> <li>Decreased<br/>exercise<br/>tolerance</li> <li>Exertional<br/>dyspnea</li> </ul> |





## Table 17. Stages of Chronic Primary MR

\*Several valve hemodynamic criteria are provided for assessment

of MR severity, but not all criteria for each category will be present

in each patient. Categorization of MR severity as mild, moderate, or

severe depends on data quality and integration of these parameters

in conjunction with other clinical evidence.







## Diagnostic Testing: Initial Diagnosis of Chronic MR

| COR | LOE         | Recommendations                                                           |
|-----|-------------|---------------------------------------------------------------------------|
|     |             | 1. In patients with known or suspected primary MR, TTE is indicated f     |
| 1   | <b>B-NR</b> | of LV size and function, RV function, LA size, pulmonary artery pres      |
|     |             | mechanism and severity of primary MR (Stages A to D).                     |
|     |             | 2. In patients with primary MR, when TTE provides insufficient or disc    |
| 1   | C-EO        | TEE is indicated for evaluation of the severity of MR, mechanism of       |
|     |             | function (Stages B to D).                                                 |
|     |             | 3. In patients with primary MR, CMR is indicated to assess LV and RV      |
| 1   | <b>B-NR</b> | and may help with assessing MR severity when there is a discrepancy       |
|     |             | on clinical assessment and echocardiography.                              |
|     |             | 4. In patients with severe primary MR undergoing mitral intervention,     |
| 1   | <b>B-NR</b> | indicated to establish the anatomic basis for primary MR (Stages C $lpha$ |
|     |             | repair.                                                                   |



# for baseline evaluation essure, and the

## scordant information,

### f MR, and status of LV

## V volumes and function

### cy between the findings

### , intraoperative TEE is

### and D) and to guide

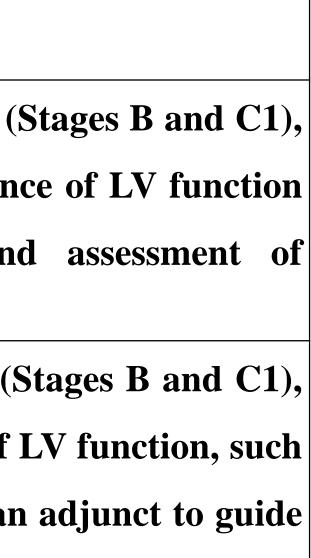


Diagnostic Testing: Changing Signs or Symptoms in Patients With Primary MR

| COR | LOE         | Recommendation                                                                                                                       |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 1. In patients with primary MR (Sta<br>and new-onset or changing sympto<br>indicated to evaluate the m<br>apparatus and LV function. |



## ages B to D) oms, TTE is nitral valve




## Routine Follow-Up for Patients with Chronic Primary MR

| COR       | LOE         | Recommendations                                                                                                                                                                                |
|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | <b>B-NR</b> | <b>1.</b> For asymptomatic patients with severe primary MR (<br>TTE is indicated every 6 to 12 months for surveillan<br>(estimated by LVEF, LVEDD, and LVESD) an<br>pulmonary artery pressure. |
| <b>2b</b> | <b>B-NR</b> | 2. In asymptomatic patients with severe primary MR (Subsection of serum biomarkers and novel measurements of as global longitudinal strain, may be considered as an timing of intervention.    |









## Exercise Testing for Patients with Chronic Primary MR

| COR        | LOE         | Recommendation                                                                                                                                                                                      |  |  |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>2</b> a | <b>B-NR</b> | 1. In patients with primary MR (Stages F<br>symptoms that might be attributal<br>hemodynamic exercise testing usi<br>echocardiography or cardiac cathet<br>cardiopulmonary exercise testing is reas |  |  |



## **B** and **C**) and ble to MR, Doppler ing eterization or sonable.



## Medical Therapy for Patients with Chronic Primary MR

| COR              | LOE         | Recommendations                                                                                                                                                                     |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a       | <b>B-NR</b> | 1. In symptomatic or asymptomatic patients with s<br>MR and LV systolic dysfunction (Stages C2 and<br>surgery is not possible or must be delayed, GDM<br>dysfunction is reasonable. |
| 3: No<br>Benefit | <b>B-NR</b> | 2. In asymptomatic patients with primary MR and<br>systolic function (Stages B and C1), vasodilator t<br>indicated if the patient is normotensive.                                  |



# severe primary l D) in whom MT for systolic

## d normal LV therapy is not



## Intervention for Patients with Chronic Primary MR

| COR | LOE         | Recommendations                                                                                                                                                                                                                                                                                |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | B-NR        | 1. In symptomatic patients with severe primary MR (Stag<br>intervention is recommended irrespective of LV systolic function                                                                                                                                                                    |
| 1   | B-NR        | 2. In asymptomatic patients with severe primary MR and LV (LVEF ≤60%, LVESD ≥40 mm) (Stage C2), mitral valve surge                                                                                                                                                                             |
| 1   | B-NR        | <b>3.</b> In patients with severe primary MR for whom surgery is indrepair is recommended in preference to mitral value repanatomic cause of MR is degenerative disease, if a successful a possible.                                                                                           |
| 2a  | <b>B-NR</b> | 4. In asymptomatic patients with severe primary MR and<br>function (LVEF ≥60% and LVESD ≤40 mm) (Stage C1), m<br>reasonable when the likelihood of a successful and dura<br>residual MR is >95% with an expected mortality rate of <2<br>performed at a Primary or Comprehensive Valve Center. |



### ge D), mitral valve tion.

# *y* systolic dysfunction ery is recommended.

### dicated, mitral valve placement when the and durable repair is

### normal LV systolic nitral valve repair is rable repair without <1%, when it can be

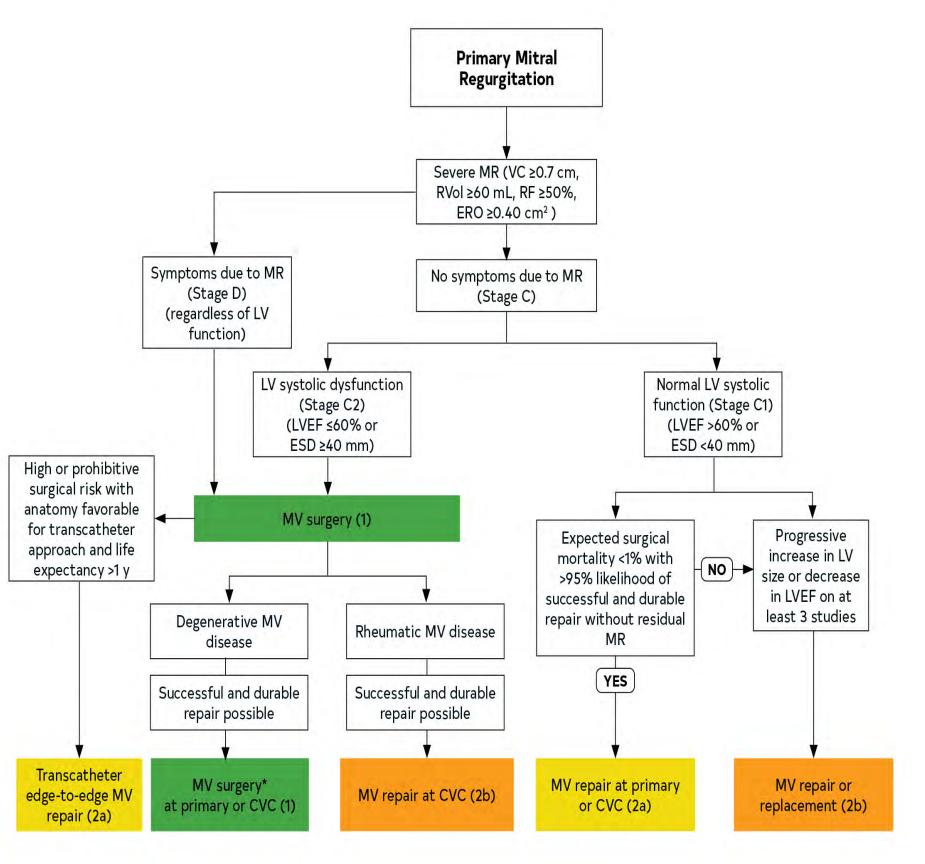


## Intervention for Patients with Chronic Primary MR

| COR     | LOE         | Recommendations                                                                                                                                                                                                                                                        |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2b      | C-LD        | 5. In asymptomatic patients with severe primary MR and normal LV<br>>60% and LVESD <40 mm) (Stage C1) but with a progressive<br>decrease in EF on ≥3 serial imaging studies, mitral valve surge<br>irrespective of the probability of a successful and durable repair. |
| 2a      | <b>B-NR</b> | 6. In severely symptomatic patients (NYHA class III or IV) with prima<br>or prohibitive surgical risk, transcatheter edge-to-edge repair (T<br>mitral valve anatomy is favorable for the repair procedure and pat-<br>least 1 year.                                    |
| 2b      | B-NR        | 7. In symptomatic patients with severe primary MR attributable to mitral valve repair may be considered at a Comprehensive Valve C team when surgical treatment is indicated, if a durable and successf                                                                |
| 3: Harm | B-NR        | 8. In patients with severe primary MR where leaflet pathology is limi<br>the posterior leaflet, mitral valve replacement should not be perfor<br>repair has been attempted at a Primary or Comprehensive<br>unsuccessful.                                              |



### V systolic function (LVEF e increase in LV size or gery may be considered


nary severe MR and high TEER) is reasonable if itient life expectancy is at

rheumatic valve disease, Center by an experienced ful repair is likely

nited to less than one half ormed unless mitral valve Valve Center and was



Figure 8. \*See Prosthetic Valve section (11.1.2) for choice of mitral valve replacement if mitral valve repair is not possible.









## Table 18. Stages of Secondary MR

| Grade | Definition     | Valve Anatomy                                                                                                                                                                                              | Valve<br>Hemodynamics*                                                                                                       | Associated Cardiac<br>Findings                                                                                                                                                                                                                        | Symptoms                                                                                                                                              |
|-------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | At risk of MR  | <ul> <li>Normal valve leaflets,<br/>chords, and annulus<br/>in a patient with CAD<br/>or cardiomyopathy</li> </ul>                                                                                         | <ul> <li>No MR jet or small central jet area &lt;20% LA on Doppler</li> <li>Small vena contracta &lt;0.30 cm</li> </ul>      | <ul> <li>Normal or mildly<br/>dilated LV size with<br/>fixed (infarction) or<br/>inducible (ischemia)<br/>regional wall motion<br/>abnormalities</li> <li>Primary myocardial<br/>disease with LV<br/>dilation and systolic<br/>dysfunction</li> </ul> | • Symptoms attributable<br>to coronary ischemia<br>or HF may be present<br>that respond to<br>revascularization and<br>appropriate medical<br>therapy |
| В     | Progressive MR | <ul> <li>Regional wall motion<br/>abnormalities with<br/>mild tethering of<br/>mitral leaflet</li> <li>Annular dilation with<br/>mild loss of central<br/>coaptation of the<br/>mitral leaflets</li> </ul> | <ul> <li>ERO &lt;0.40 cm<sup>2</sup>†</li> <li>Regurgitant volume &lt;60 mL</li> <li>Regurgitant fraction &lt;50%</li> </ul> | <ul> <li>Regional wall motion<br/>abnormalities with<br/>reduced LV systolic<br/>function</li> <li>LV dilation and<br/>systolic dysfunction<br/>attributable to<br/>primary myocardial<br/>disease</li> </ul>                                         | • Symptoms attributable<br>to coronary ischemia<br>or HF may be present<br>that respond to<br>revascularization and<br>appropriate medical<br>therapy |





## Table 18. Stages of Secondary MR

Footnote text located on the next slide

| Grade | Definition                | Valve Anatomy                                                                                                                                                                                                                         | Valve<br>Hemodynamics*                                                                    | Associated Cardiac<br>Findings                                                                                                                                                                                | Symptoms                                                                                                                                                                                                              |
|-------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C     | Asymptomatic severe<br>MR | <ul> <li>Regional wall motion<br/>abnormalities and/or<br/>LV dilation with<br/>severe tethering of<br/>mitral leaflet</li> <li>Annular dilation with<br/>severe loss of central<br/>coaptation of the<br/>mitral leaflets</li> </ul> | <ul> <li>Regurgitant<br/>volume ≥60 mL‡</li> <li>Regurgitant<br/>fraction ≥50%</li> </ul> | <ul> <li>Regional wall motion<br/>abnormalities with<br/>reduced LV systolic<br/>function</li> <li>LV dilation and<br/>systolic dysfunction<br/>attributable to<br/>primary myocardial<br/>disease</li> </ul> | • Symptoms attributable<br>to coronary ischemia<br>or HF may be present<br>that respond to<br>revascularization and<br>appropriate medical<br>therapy                                                                 |
| D     | Symptomatic severe<br>MR  | <ul> <li>Regional wall motion<br/>abnormalities and/or<br/>LV dilation with<br/>severe tethering of<br/>mitral leaflet</li> <li>Annular dilation with<br/>severe loss of central<br/>coaptation of the<br/>mitral leaflets</li> </ul> |                                                                                           | <ul> <li>Regional wall motion<br/>abnormalities with<br/>reduced LV systolic<br/>function</li> <li>LV dilation and<br/>systolic dysfunction<br/>attributable to<br/>primary myocardial<br/>disease</li> </ul> | <ul> <li>HF symptoms<br/>attributable to MR<br/>persist even after<br/>revascularization and<br/>optimization of<br/>medical therapy</li> <li>Decreased exercise<br/>tolerance</li> <li>Exertional dyspnea</li> </ul> |





## Table 18. Stages of Secondary MR

\*Several valve hemodynamic criteria are provided for assessment of MR severity, but not all

criteria for each category will be present in each patient. Categorization of MR severity as mild,

moderate, or severe depends on data quality and integration of these parameters in conjunction

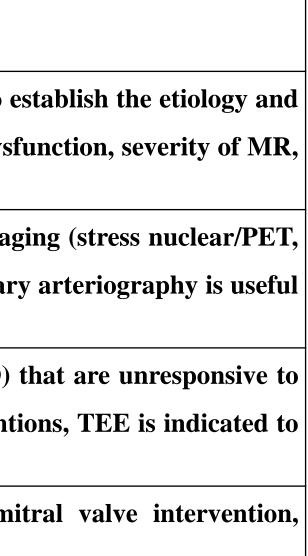
with other clinical evidence.

<sup>†</sup>The measurement of the proximal isovelocity surface area by 2D TTE in patients with

secondary MR underestimates the true ERO because of the crescentic shape of the proximal convergence.

<sup>‡</sup>May be lower in low-flow states.








## Diagnosis of Secondary MR

| COR | LOE         | Recommendations                                                                                                                                                                                                   |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | B-NR        | 1. In patients with chronic secondary MR (Stages B to D), TTE is useful to e<br>to assess the extent of regional and global LV remodeling and systolic dyst<br>and magnitude of pulmonary hypertension.           |
| 1   | C-EO        | 2. In patients with chronic secondary MR (Stages B to D), noninvasive image CMR, or stress echocardiography), coronary CT angiography, or coronar to establish etiology of MR and to assess myocardial viability. |
| 1   | <b>B-NR</b> | 3. In patients with chronic secondary MR with severe symptoms (Stage D)<br>GDMT who are being considered for transcatheter mitral valve intervent<br>determine suitability for the procedure.                     |
| 1   | C-EO        | 4. In patients with chronic secondary MR undergoing transcatheter minimum intraprocedural guidance with TEE is recommended.                                                                                       |







| COR | LOE  | Recommendations                                                                                                                                                                                                          |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | A    | 1. Patients with chronic severe secondary MR (Stages C an<br>reduced LVEF should receive standard GDMT for HF, inclue<br>ARBs, beta blockers, aldosterone antagonists, and/or sacu<br>biventricular pacing as indicated. |
| 1   | C-EO | 2. In patients with chronic severe secondary MR and HF wi<br>cardiologist expert in the management of patients with<br>dysfunction should be the primary MDT member responsib<br>and monitoring optimal GDMT.            |



# and D) and HF with uding ACE inhibitors, ubitril/valsartan, and vith reduced LVEF, a HF and LV systolic ible for implementing



## Intervention of Patients with Secondary MR

| COR | LOE  | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a  | B-R  | <ol> <li>In patients with chronic severe secondary MR related to LV systolic dysfunction (LVEF &lt;50%) wh<br/>have persistent symptoms (NYHA class II, III, or IV) while on optimal GDMT for HF (Stage D),<br/>transcatheter edge-to-edge mitral valve repair (TEER) is reasonable in patients with appropriate<br/>anatomy as defined on TEE and with LVEF between 20% and 50%, LVESD ≤70 mm, and<br/>pulmonary artery systolic pressure ≤70 mm Hg.</li> </ol> |
| 2a  | B-NR | 2. In patients with severe secondary MR (Stages C and D), mitral valve surgery is reasonable when CABG is undertaken for the treatment of myocardial ischemia.                                                                                                                                                                                                                                                                                                   |
| 2b  | B-NR | 3. In patients with chronic severe secondary MR from atrial annular dilation with preserved LV systolic function (LVEF ≥50%) who have severe persistent symptoms (NYHA class III or IV) despit therapy for HF and therapy for associated AF or other comorbidities (Stage D), mitral valve surgery may be considered.                                                                                                                                            |

## ge D), mitral valve

### HA class III or IV) despite

### with preserved LV

### ery is reasonable when

### $SD \leq 70 \text{ mm}, \text{ and}$

## **DMT for HF (Stage D),**

### unction (LVEF <50%) who







| COR | LOE         | Recommendations                                                                                                                                                                                                                                                                           |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2b  | <b>B-NR</b> | 4. In patients with chronic severe secondary MR related dysfunction (LVEF <50%) who have persistent severe syme III or IV) while on optimal GDMT for HF (Stage D), n may be considered.                                                                                                   |
| 2b  | B-R         | 5. In patients with CAD and chronic severe secondary MR red<br>dysfunction (LVEF <50%) (Stage D) who are undergoing re-<br>because of severe symptoms (NYHA class III or IV) to<br>GDMT for HF, chordal-sparing mitral valve replacement<br>to choose over downsized annuloplasty repair. |

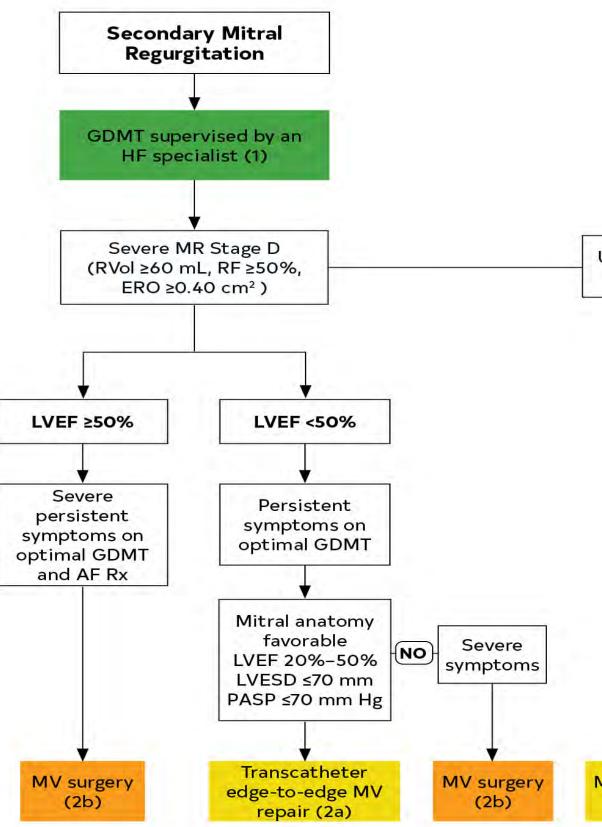




# ated to LV systolic nptoms (NYHA class mitral valve surgery

### related to LV systolic

### mitral valve surgery


### that persist despite

### it may be reasonable



Figure 9. Secondary MR \*Chordal-sparing MV replacement may be reasonable to choose over downsized annuloplasty repair.

# Colors correspond to Table 2.





122

| Undergoing<br>CABG |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
| MV surgery*        |  |
| (2a)               |  |



# Table 19. Classification of TR

| Primary                                                                                                                                                                                                                                                         | Secondary                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Rheumatic</li> <li>Infective endocarditis</li> <li>Iatrogenic (device leads,<br/>endomyocardial biopsy)</li> <li>Congenital (e.g., Ebstein's, levo-<br/>transposition of the great<br/>arteries.)</li> <li>Other (trauma, carcinoid, drugs,</li> </ul> | <ul> <li>Pulmonary hyperten<br/>remodeling (primary<br/>to left-sided heart di</li> <li>Dilated cardiomyopa</li> <li>Annular dilation (ass<br/>AF)*</li> <li>RV volume overload<br/>output)</li> </ul> |  |  |
| irradiation, etc.)                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |  |  |

\*Isolated TR is associated with AF and has LVEF >60%, pulmonary artery systolic pressure <50 mm Hg, and no left-sided valve disease, with normal-appearing tricuspid valve leaflets



# nsion with RV y or secondary isease) oathy ssociated with

## d (shunts/ high





# Table 20. Stages of TR

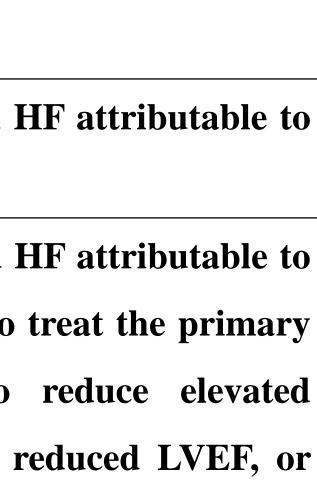
| Stage | Definition                | Valve Hemodynamics                                                                                                                                                                                                                                          | Hemodynamic Consequences                                                   | Clinical Symptoms and<br>Presentation                                                                          |
|-------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| В     | Progressive TR            | <ul> <li>Central jet &lt; 50% RA</li> <li>Vena contracta width &lt; 0.7 cm</li> <li>ERO &lt; 0.40 cm<sup>2</sup></li> <li>Regurgitant volume &lt; 45 mL</li> </ul>                                                                                          | None                                                                       | None                                                                                                           |
| C     | Asymptomatic severe<br>TR | <ul> <li>Central jet ≥50% RA</li> <li>Vena contracta width ≥0.7 cm</li> <li>ERO ≥0.40 cm<sup>2</sup></li> <li>Regurgitant volume ≥45 mL</li> <li>Dense continuous wave signal with triangular shape</li> <li>Hepatic vein systolic flow reversal</li> </ul> | <ul> <li>Dilated RV and RA</li> <li>Elevated RA with "c-V" wave</li> </ul> | <ul> <li>Elevated venous<br/>pressure</li> <li>No symptoms</li> </ul>                                          |
| D     | Symptomatic severe<br>TR  | <ul> <li>Central jet ≥50% RA</li> <li>Vena contracta width ≥0.7 cm</li> <li>ERO ≥0.40 cm<sup>2</sup></li> <li>Regurgitant volume ≥45 mL</li> <li>Dense continuous wave signal with triangular shape</li> <li>Hepatic vein systolic flow reversal</li> </ul> | <ul> <li>Dilated RV and RA</li> <li>Elevated RA with "c-V" wave</li> </ul> | <ul> <li>Elevated venous<br/>pressure</li> <li>Dyspnea on exertion,<br/>fatigue, ascites,<br/>edema</li> </ul> |





| COR        | LOE  | Recommendations                                                                                                                                                                                                                                                     |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | C-LD | 1. In patients with TR, TTE is indicated to evaluate the presence<br>determine the etiology, measure the sizes of the right-sided ch<br>vena cava, assess RV systolic function, estimate pulmor<br>pressure, and characterize any associated left-sided heart dises |
| <b>2</b> a | C-LD | 2. In patients with TR, invasive measurement of the cardia<br>diastolic pressures, pulmonary artery pressures, and p<br>resistance, as well as right ventriculography, can be usefu<br>noninvasive data are discordant or inadequate.                               |




# ce and severity of TR, hambers and inferior onary artery systolic ease. ac index, right-sided pulmonary vascular ul when clinical and



Medical Therapy for Patients with Tricuspid Regurgitation

| COR        | LOE  | Recommendations                                                                                                                                                                                                                                     |
|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | C-EO | <b>1. In patients with signs and symptoms of right-sided</b><br>severe TR (Stages C and D), diuretics can be useful.                                                                                                                                |
| <b>2</b> a | C-EO | 2. In patients with signs and symptoms of right-sided<br>severe secondary TR (Stages C and D), therapies to<br>cause of HF (e.g., pulmonary vasodilators to<br>pulmonary artery pressures, GDMT for HF with<br>rhythm control of AF) can be useful. |





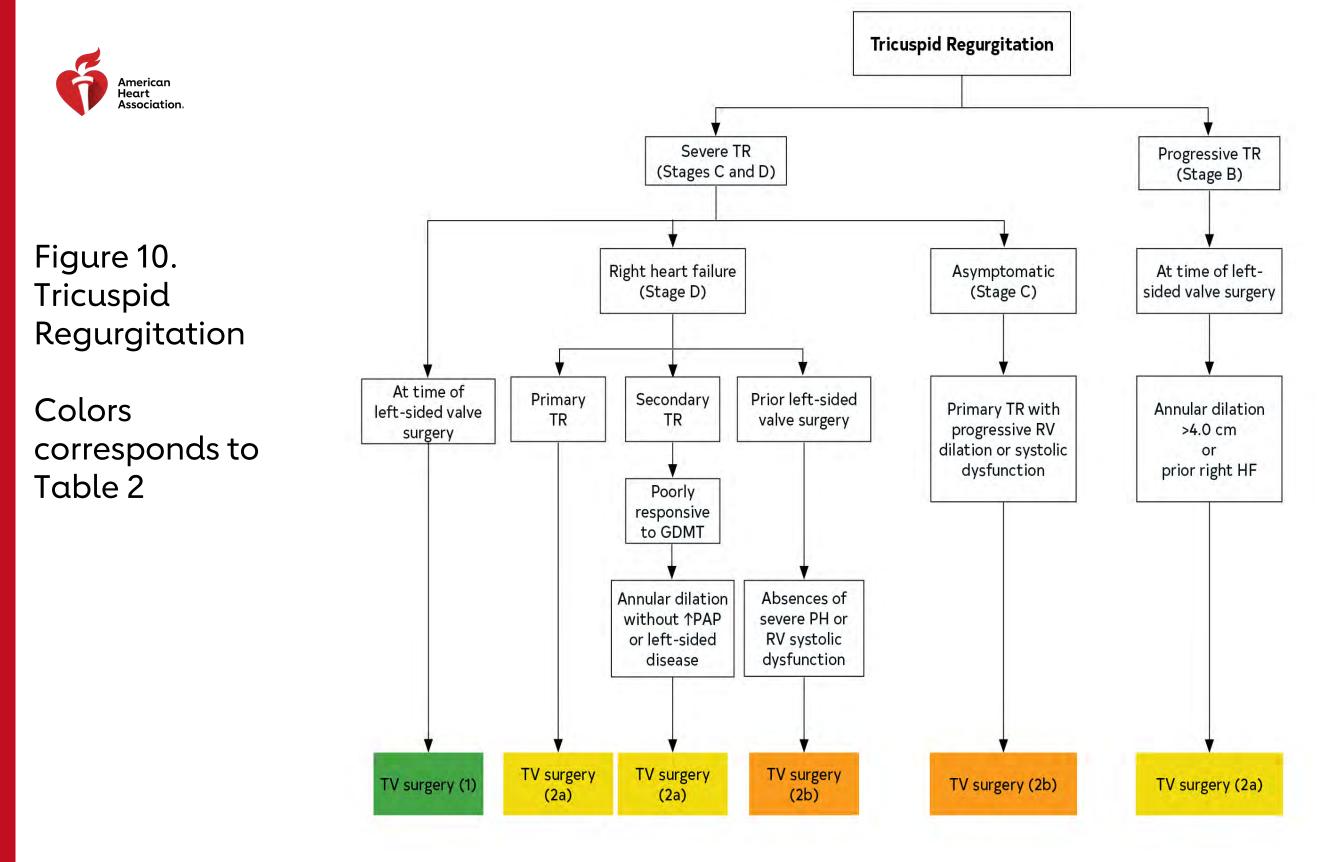


# Timing of Intervention of TR

| COR        | LOE         | Recommendations                                                                                                                                                                                                                 |
|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | B-NR        | <b>1. In patients with severe TR (Stages C and D) undergoing lef surgery, tricuspid valve surgery is recommended.</b>                                                                                                           |
| <b>2</b> a | <b>B-NR</b> | 2. In patients with progressive TR (Stage B) undergoing left-site tricuspid valve surgery can be beneficial in the context of examplar dilation (tricuspid annulus end diastolic diameter>signs and symptoms of right-sided HF. |
| <b>2</b> a | B-NR        | 3. In patients with signs and symptoms of right-sided HF and (Stage D), isolated tricuspid valve surgery can be beneficial symptoms and recurrent hospitalizations.                                                             |



# eft-sided valve sided valve surgery, either 1) tricuspid >4.0 cm) or 2) prior l severe primary TR al to reduce




## Timing of Intervention of TR

| COR | LOE         | Recommendations                                                                                                                                                                                                                                                                   |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a  | <b>B-NR</b> | 4. In patients with signs and symptoms of right-sided HF and severe<br>attributable to annular dilation (in the absence of pulmonary hy<br>disease) who are poorly responsive to medical therapy (Stage D),<br>surgery can be beneficial to reduce symptoms and recurrent hospita |
| 2b  | C-LD        | 5. In asymptomatic patients with severe primary TR (Stage C) and pr<br>systolic dysfunction, isolated tricuspid valve surgery may be conside                                                                                                                                      |
| 2b  | B-NR        | 6. In patients with signs and symptoms of right-sided HF and severe<br>undergone previous left-sided valve surgery, reoperation with i<br>surgery may be considered in the absence of severe pulmonary hyp<br>systolic dysfunction.                                               |



## re isolated secondary TR ypertension or left-sided , isolated tricuspid valve talizations. orogressive RV dilation or dered. e TR (Stage D) who have isolated tricuspid valve pertension or severe RV









# Pulmonic Valve Disease



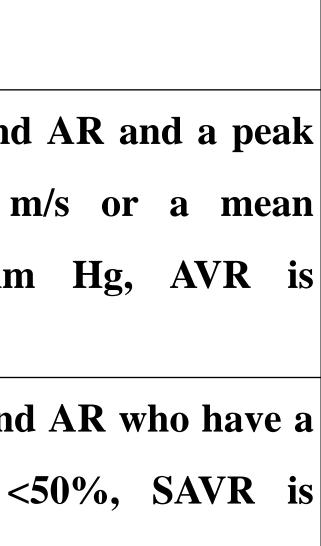


## Diagnosis and Follow-up of Patients with Mixed Valve Disease

| COR       | LOE  | Recommendations                                                                                                                                                                                      |
|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | C-EO | 1. For patients with mixed valve disease, TTE is a assess the etiology, severity, and pathophysiolog                                                                                                 |
| <b>2a</b> | C-EO | 2. In patients with ambiguous symptoms that are<br>attributable to mixed mitral valve disease, fur<br>of filling pressure by using biomarker<br>hemodynamic measurements at rest or w<br>reasonable. |






## recommended to gical impact. e suspected to be rther assessment invasive or <sup>S</sup> with exercise is



## Timing of Intervention of Patients with Mixed AS and AR

| COR | LOE         | Recommendations                                                                                                                                            |  |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | <b>B-NR</b> | 1. In symptomatic patients with combined AS and<br>transvalvular jet velocity of at least 4.0 m<br>transvalvular gradient of at least 40 mm<br>recommended |  |
| 1   | C-EO        | 2. In asymptomatic patients with combined AS an jet velocity of ≥4.0 m/s with an LVEF                                                                      |  |







## Table 21. AS/MR Mixed Valve Disease

| Severe AS                        | Severe MR                                                                              | Surgical Risk    | Procedure                                                                      |
|----------------------------------|----------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------|
| SAVR candidate                   | <ul> <li>Primary MR</li> <li>Popairable valve</li> </ul>                               | Low intermediate | SAVR     Surgical r                                                            |
| SAVR candidate                   | <ul> <li>Repairable valve</li> <li>Primary MR</li> <li>Valve not repairable</li> </ul> | Low intermediate | <ul> <li>Surgical m</li> <li>SAVR</li> <li>Surgical m</li> </ul>               |
| TAVI candidate                   | <ul><li> Primary</li><li> Repairable valve</li></ul>                                   | High prohibitive | <ul><li>TAVI</li><li>Mitral TEI</li></ul>                                      |
| SAVR candidate<br>TAVI candidate | Secondary MR                                                                           | Low intermediate | <ul> <li>SAVR</li> <li>Surgical m<br/>valve replation</li> <li>TAVI</li> </ul> |
| TAVI candidate                   | Secondary MR                                                                           | High prohibitive | <ul> <li>Mitral TEI</li> <li>TAVI</li> <li>Mitral TEI</li> </ul>               |

\*Consider TEER as a later staged procedure if symptoms and severe MR persist after treatment of the AS.





### mitral valve MV repair

### mitral valve replacement

EER\*

### mitral valve repair/mitral lacement or

EER\*

EER\*





## Diagnosis and Follow-up of Patients with **Prosthetic Valves**

| COR | LOE         | Recommendations                                                                                                                                                                                      |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 1. In patients with a surgical or transcatheter prosthetic<br>patients who have had valve repair, an initial postpro<br>study is recommended for evaluation of valve hemody<br>ventricular function. |
| 1   | C-EO        | 2. In patients with a prosthetic valve or prior valve repaction of the symptoms or signs suggesting valve dysfunction recommended.                                                                   |





# ic valve and in ocedural TTE lynamics and

## air and a change in ion, repeat TTE is



## Diagnosis and Follow-up of Patients with **Prosthetic Valves**

| COR        | LOE  | Recommendations                                                                                                                                                                                                                       |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | C-LD | 3. In patients with a prosthetic valve replacement or<br>repair and clinical symptoms or signs that suggest<br>dysfunction, additional imaging with TEE, gated of<br>fluoroscopy is recommended, even if TTE does not<br>dysfunction. |
| <b>2</b> a | C-LD | 4. In patients with a bioprosthetic surgical valve, TT<br>years and then annually after implantation is reas<br>the absence of a change in clinical status.                                                                           |
| <b>2</b> a | C-LD | <b>5. In patients with a bioprosthetic TAVI, TTE annual</b>                                                                                                                                                                           |





## r prior valve t prosthetic valve cardiac CT, or ot show valve

## **TE at 5 and 10** sonable, even in

### ally is reasonable.



## Prosthetic Valve Type: Bioprosthetic Versus Mechanical Valve

| COR | LOE         | Recommendations                                                                                                                                                                                                                                                                         |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-LD        | 1. For patients who require heart valve replacement, the choice of probased on a shared decision-making process that accounts for the preferences and includes discussion of the indications for and therapy and the potential need for and risks associated with valve representation. |
| 1   | C-EO        | 2. For patients of any age requiring valve replacement for whom a contraindicated, cannot be managed appropriately, or is not desire is recommended.                                                                                                                                    |
| 2a  | <b>B-NR</b> | 3. For patients <50 years of age who do not have a contraindication require AVR, it is reasonable to choose a mechanical aortic prosthe valve.                                                                                                                                          |



### nesis over a bioprosthetic

### n to anticoagulation and

## red, a bioprosthetic valve

### anticoagulant therapy is

### reintervention.

### l risks of anticoagulant

## the patient's values and

### rosthetic valve should be

### AMERICAN COLLEGE of CARDIOLOGY FOUNDATION



## Prosthetic Valve Type – Bioprosthetic Versus Mechanical Valve

| COR        | LOE  | Recommendations                                                                                                                                                                                                                                                                                        |
|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a         | B-NR | 4. For patients 50 to 65 years of age who require AVR and who do not have a contraindication to anticoagulation, it is reasonable to individualize the choice of either a mechanical or bioprosthetic AVR, with consideration of individual patient factors and after informed shared decision-making. |
| <b>2</b> a | B-NR | 5. In patients >65 years of age who require AVR, it is reasonable to choose a bioprosthesis over a mechanical valve.                                                                                                                                                                                   |
| <b>2</b> a | B-NR | 6. For patients <65 years of age who have an indication for mitral valve replacement, do not<br>have a contraindication to anticoagulation, and are unable to undergo mitral valve repair,<br>it is reasonable to choose a mechanical mitral prosthesis over a bioprosthetic valve.                    |

## oprosthetic valve.

## ergo mitral valve repair,

### o choose a bioprosthesis

## lual patient factors and

### d who do not have a

## ize the choice of either a



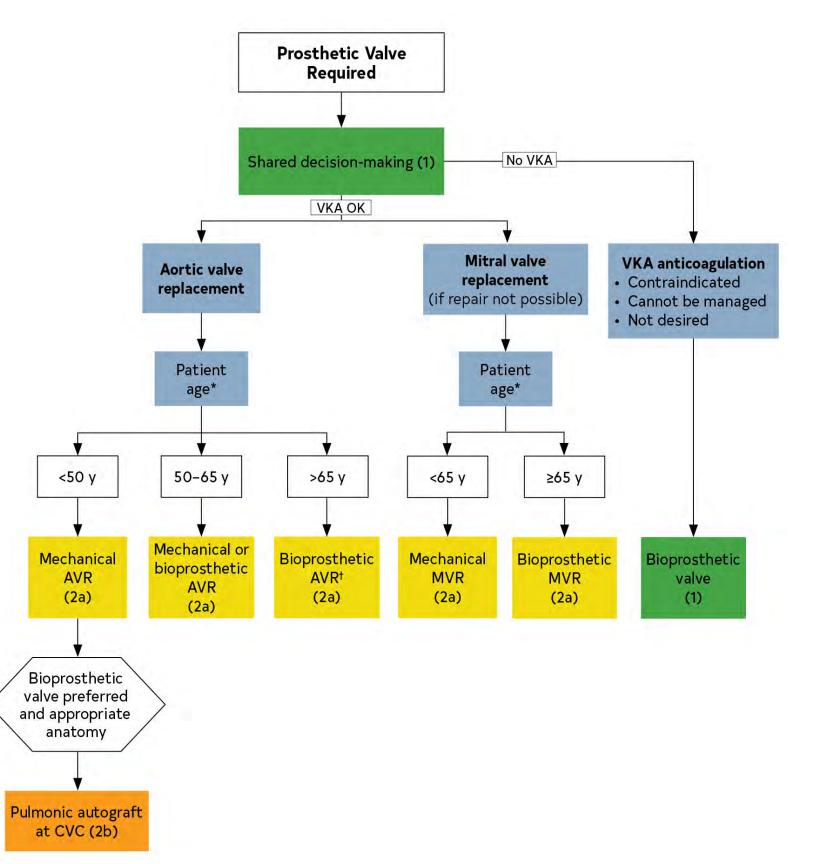


## Prosthetic Valve Type – Bioprosthetic Versus Mechanical Valve

| COR        | LOE         | Recommendations                                                                                                                                                                          |
|------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 7. For patients ≥65 years of age who require mitral wand are unable to undergo mitral valve repair, it choose a bioprosthesis over a mechanical valve.                                   |
| 2b         | B-NR        | 8. In patients <50 years of age who prefer a bioprosthe<br>appropriate anatomy, replacement of the aortic val<br>autograft (the Ross procedure) may be co<br>Comprehensive Valve Center. |






## valve replacement it is reasonable to

### etic AVR and have lve by a pulmonic considered at a



Figure 11. Prosthetic valves: choice of bioprosthetic versus mechanical valve type.

Colors correspond to Table 2





## Footnote text located on the next slide





\*Approximate ages, based on U.S. Actuarial Life Expectancy tables, are provided for guidance. The balance between expected patient longevity and valve durability varies continuously across the age range, with more durable valves preferred for patients with a longer life expectancy. Bioprosthetic valve durability is finite (with shorter durability for younger patients), whereas mechanical values are very durable but require lifelong anticoagulation. Long-term (20-y) data on outcomes with surgical bioprosthetic valves are available; robust data on transcatheter bioprosthetic values extend to only 5 y, leading to uncertainty about longer-term outcomes. The decision about valve type should be individualized on the basis of patient-specific factors that might affect expected longevity.

\*See Section 3.2.4.2 for a discussion of the choice of TAVI versus SAVR.







## Table 22. Selected Factors That May Impact Shared Decision-Making for the Choice of Prosthetic Valve 🚳

| Favor Mechanical Prosthesis                                                                                                                                                                                       | Favor Bioprosthesis                                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Age &lt;50 y</li> <li>Increased incidence of structural deterioration with bioprosthesis (15-y risk: 30% for age 40 y, 50% for age 20 y)</li> <li>Lower risk of anticoagulation complications</li> </ul> | <ul> <li>Age &gt;65 y</li> <li>Low incidence of structural deteriora age &gt;70 y)</li> <li>Higher risk of anticoagulation complete</li> </ul> |  |
| • Patient preference (avoid risk of reintervention)                                                                                                                                                               | • Patient preference (avoid risk and incation anticoagulation)                                                                                 |  |
| • Low risk of long-term anticoagulation                                                                                                                                                                           | • High risk of long-term anticoagulation                                                                                                       |  |
| • Compliant patient with either home monitoring or close access to INR monitoring                                                                                                                                 | • Limited access to medical care or ina                                                                                                        |  |
| • Other indication for long-term anticoagulation (e.g., AF)                                                                                                                                                       | • Access to surgical centers with low r                                                                                                        |  |
| • High-risk reintervention (e.g., porcelain aorta, prior radiation therapy)                                                                                                                                       | Access to transcatheter ViV replacen                                                                                                           |  |
| • Small aortic root size for AVR (may preclude ViV procedure in future)                                                                                                                                           | • TAVI valves have larger effective ori sizes (avoid patient–prosthesis mism                                                                   |  |



### ration (15-y risk: <10% for

### olications

nconvenience of

### ion

### ability to regulate VKA

### reoperation mortality rate

ment

### rifice areas for smaller valve natch)



| COR | LOE         | Recommendations                                                                                                                                                                                                                                   |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Α           | 1. In patients with a mechanical prosthetic valve, anticoagula recommended.                                                                                                                                                                       |
| 1   | <b>B-NR</b> | 2. For patients with a mechanical bileaflet or current-generation s<br>and no risk factors for thromboembolism, anticoagulation with<br>INR of 2.5 is recommended.                                                                                |
| 1   | B-NR        | <b>3.</b> For patients with a mechanical AVR and additional risk factors<br>(e.g., AF, previous thromboembolism, LV dysfunction, hyperco<br>older-generation prosthesis (e.g., ball-in-cage), anticoagulat<br>indicated to achieve an INR of 3.0. |
| 1   | B-NR        | 4. For patients with a mechanical mitral valve replacement, anticonsistent is indicated to achieve an INR of 3.0.                                                                                                                                 |





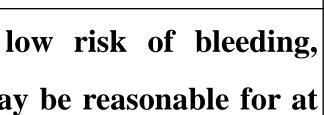
# lation with a VKA is single-tilting disk AVR th a VKA to achieve an s for thromboembolism coagulable state) or an tion with a VKA is coagulation with a VKA



## Antithrombotic Therapy for Prosthetic Valves

| COR | LOE         | Recommendations                                                                                                                                                                                             |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a  | B-R         | 5. For patients with a bioprosthetic TAVI, aspirin 75 to 100 mg da absence of other indications for oral anticoagulants.                                                                                    |
| 2a  | <b>B-NR</b> | 6. For all patients with a bioprosthetic SAVR or mitral valve replace<br>100 mg daily is reasonable in the absence of other indications for                                                                 |
| 2a  | <b>B-NR</b> | 7. For patients with a bioprosthetic SAVR or mitral valve replace<br>risk of bleeding, anticoagulation with a VKA to achieve an INR<br>at least 3 months and for as long as 6 months after surgical replace |
| 2b  | B-R         | 8. For patients with a mechanical SAVR or mitral valve replacen<br>with a VKA and have an indication for antiplatelet therapy, a<br>100 mg daily may be considered when the risk of bleeding is low         |






# laily is reasonable in the cement, aspirin 75 to or oral anticoagulants. acement who are at low **R** of 2.5 is reasonable for lacement. ment who are managed addition of aspirin 75 to

W.



| COR | LOE         | Recommendations                                                                                                                                                                                                                    |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2b  | B-R         | 9. For patients with a mechanical On-X AVR and no thromboembolic risk factors, use of a VKA targeted to a lower INR (1.5–2.0) may be reasonable starting ≥3 months after surgery, with continuation of aspirin 75 to 100 mg daily. |
| 2b  | B-NR        | 10. For patients with a bioprosthetic TAVI who are at low risk of bleeding, dual-<br>antiplatelet therapy with aspirin 75 to 100 mg and clopidogrel 75 mg may be<br>reasonable for 3 to 6 months after valve implantation.         |
| 2b  | <b>B-NR</b> | 11. For patients with a bioprosthetic TAVI who are at low risk of bleeding,<br>anticoagulation with a VKA to achieve an INR of 2.5 may be reasonable for at<br>least 3 months after valve implantation.                            |



## idogrel 75 mg may be

## 0 mg daily.

## reasonable starting $\geq 3$

## boembolic risk factors,

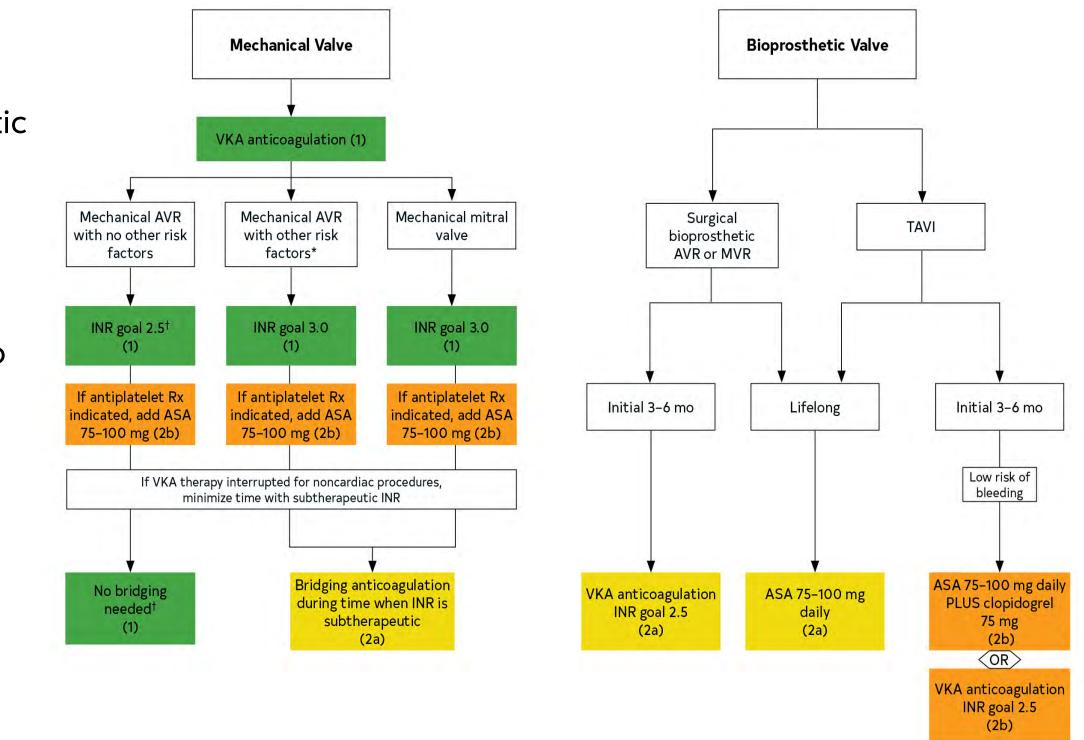






| COR  | LOE  | Recommendations                                          |
|------|------|----------------------------------------------------------|
| 3:   |      | 11. For patients with bioprosthetic TAVI, treatment      |
|      | B-R  | rivaroxaban (10 mg daily) plus aspirin (75–100 mg)       |
| Harm |      | in the absence of other indications for oral anticoagu   |
| 3:   |      | 13. For patients with a mechanical valve prosthesis, an  |
|      | B-R  | the direct thrombin inhibitor, dabigatran, is contrained |
| Harm |      |                                                          |
| 3:   |      | 14. For patients with a mechanical valve prosthesis, t   |
| 5.   | C-EO | direct oral anticoagulants has not been asses            |
| Harm |      | recommended.                                             |






# ent with low-dose is contraindicated gulants. nticoagulation with aindicated. the use of anti-Xa essed and is not



Figure 12. Antithrombotic therapy for prosthetic valves.

#### Colors correspond to Table 2.





#### Footnote text located on the next slide





\*Thromboembolic risk factors include an older-generation

valve, AF, previous thromboembolism, hypercoagulable state,

and LV systolic dysfunction.

<sup>†</sup>For a mechanical On-X AVR and no thromboembolic risk

factors, a goal INR of 1.5 to 2.0 plus aspirin 75 to 100 mg

daily may be reasonable starting  $\geq 3$  months after surgery.









#### Bridging Therapy During Interruption of Oral Anticoagulation in Patients With Prosthetic Heart Valves

| COR | LOE  | Recommendations                                                                                                                                                                                                                |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-EO | 1. For patients with mechanical heart valves who are undergoing mino<br>dental extractions or cataract removal) where bleeding is easily con<br>VKA anticoagulation with a therapeutic INR is recommended.                     |
| 1   | C-LD | 2. For patients with a bileaflet mechanical AVR and no other risk fact<br>thromboembolism who are undergoing invasive procedures, tempor<br>VKA anticoagulation, without bridging agents while the INR is sub-<br>recommended. |
| 2a  | C-LD | 3. For patients with a mechanical valve prosthesis receiving VKA ther<br>immediate/emergency noncardiac surgery or an invasive procedure<br>factor prothrombin complex concentrate (or its activated form) is re               |



### or procedures (e.g.,

#### ntrolled, continuation of

#### ctors for

#### orary interruption of

#### btherapeutic, is

#### rapy who require

#### re, administration of 4-

#### reasonable.



### Bridging Therapy During Interruption of Oral Anticoagulation in Patients With Prosthetic Heart Valves

| COR        | LOE  | Recommendations                                                                                                                                                                                                                                                                                                                           |
|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | C-LD | 4. For patients with bioprosthetic heart valves or annuloplasty rip<br>anticoagulation for AF, it is reasonable to consider the need for<br>therapy around the time of invasive procedures on the basis of the<br>weighed against the risk of bleeding.                                                                                   |
| <b>2</b> a | C-LD | 5. For patients who are undergoing invasive procedures and have 1) any thromboembolic risk factor, 2) an older-generation mechanical mitral valve replacement, bridging anticoagulation preoperative time interval when the INR is subtherapeutic individualized basis, with the risks of bleeding weighed ag thromboembolism prevention. |



#### ings who are receiving

#### bridging anticoagulant

#### ne CHA<sub>2</sub>DS<sub>2</sub>-VASc score

#### a mechanical AVR and

#### hanical AVR, or 3) a

#### on therapy during the

#### is reasonable on an

#### gainst the benefits of



### Management of Excessive Anticoagulation and Serious Bleeding in Patients with Prosthetic Valves

| COR        | LOE  | Recommendations                                                                                                                                                                                                                                              |
|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | C-LD | <b>1.</b> For patients with mechanical valves and uncontrollable bleeding where reversal of anticoagulation, administration of 4-factor prothrombin activated form) is reasonable.                                                                           |
| 2a         | C-LD | 2. For patients with mechanical valves and uncontrollable bleeding whe<br>factor prothrombin concentrate complex, adjunctive use of intraven<br>reasonable if resumption of VKA therapy is not anticipated for 7 day                                         |
| 2a         | B-NR | 3. For patients with bioprosthetic valves or annuloplasty rings who are<br>anticoagulant and who require immediate reversal of anticoagulation<br>uncontrollable bleeding, treatment with idarucizumab (for dabigatra<br>(for anti-Xa agents) is reasonable. |
| 2b         | C-LD | 4. For patients with a mechanical prosthetic valve and supratherapeuti<br>not actively bleeding, the benefit of individualized treatment with or<br>addition to temporary withdrawal of the VKA, is uncertain.                                               |





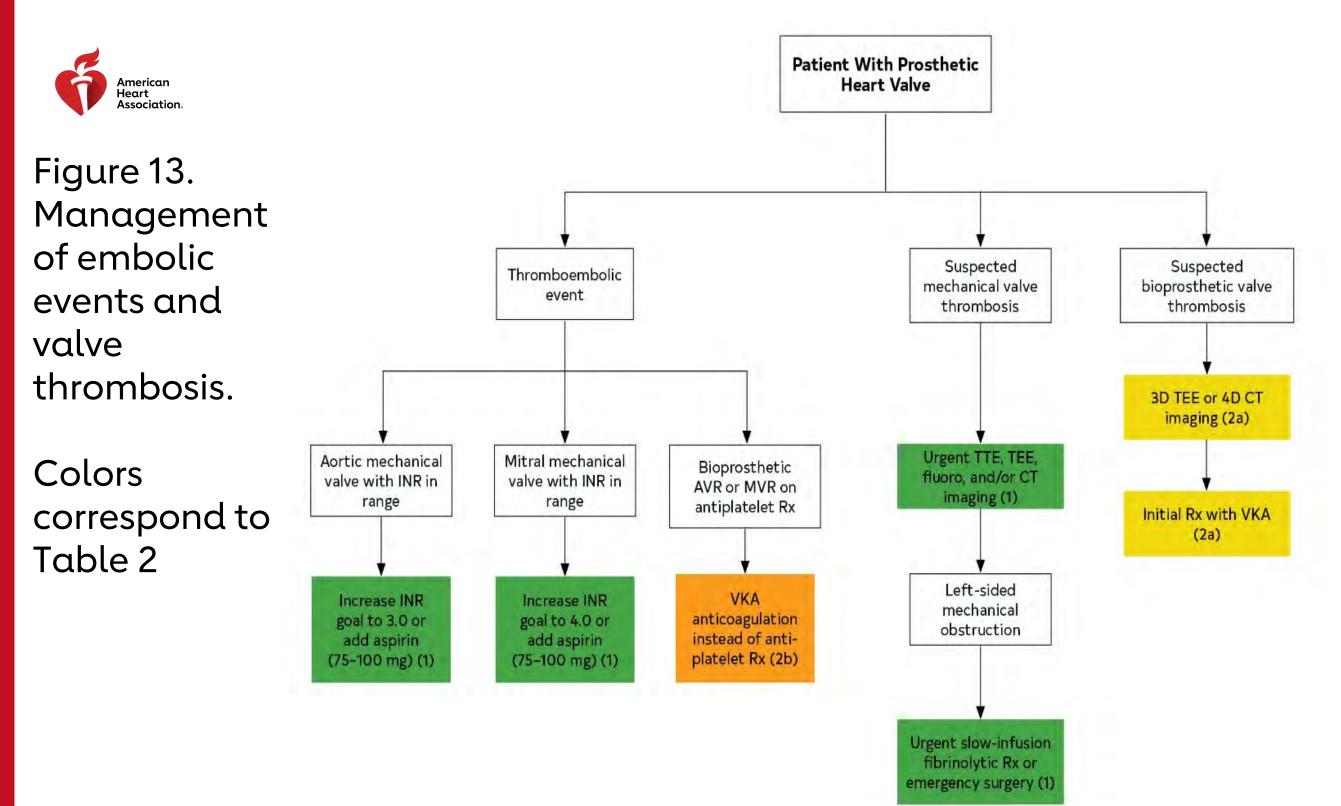
#### ho require immediate complex (or its

#### ho have received 4nous vitamin K is iys.

#### e receiving a direct oral on because of an) or andexanet alfa

#### tic INR (>5.0) who are ral vitamin K, in




# Management of Patients with Thromboembolic **Events and Prosthetic Valves**

| COR | LOE  | Recommendations                                                                                                                                                                                                                                               |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a  | C-EO | 1. In patients with a mechanical AVR who experience a stroke or system<br>therapeutic range on VKA anticoagulation, it is reasonable to increas<br>(range, 2.0–3.0) to 3.0 (range, 2.5–3.5) or to add daily low-dose aspirin (75-<br>of bleeding risk.        |
| 2a  | С-ЕО | 2. In patients with a mechanical mitral valve replacement who experience a sevent while in therapeutic range on VKA anticoagulation, it is reasonable from 3.0 (range, 2.5–3.5) to 4.0 (range, 3.5–4.0) or to add daily low-dose assessment of bleeding risk. |
| 2b  | С-ЕО | 3. In patients with a bioprosthetic surgical or transcatheter aortic valve or<br>who experience a stroke or systemic embolic event while on an<br>anticoagulation, instead of antiplatelet therapy may be considered after as                                 |





# nic embolic event while in se the INR goal from 2.5 5–100 mg), with assessment stroke or systemic embolic le to increase the INR goal aspirin (75–100 mg), with bioprosthetic mitral valve ntiplatelet therapy, VKA ssessment of bleeding risk.







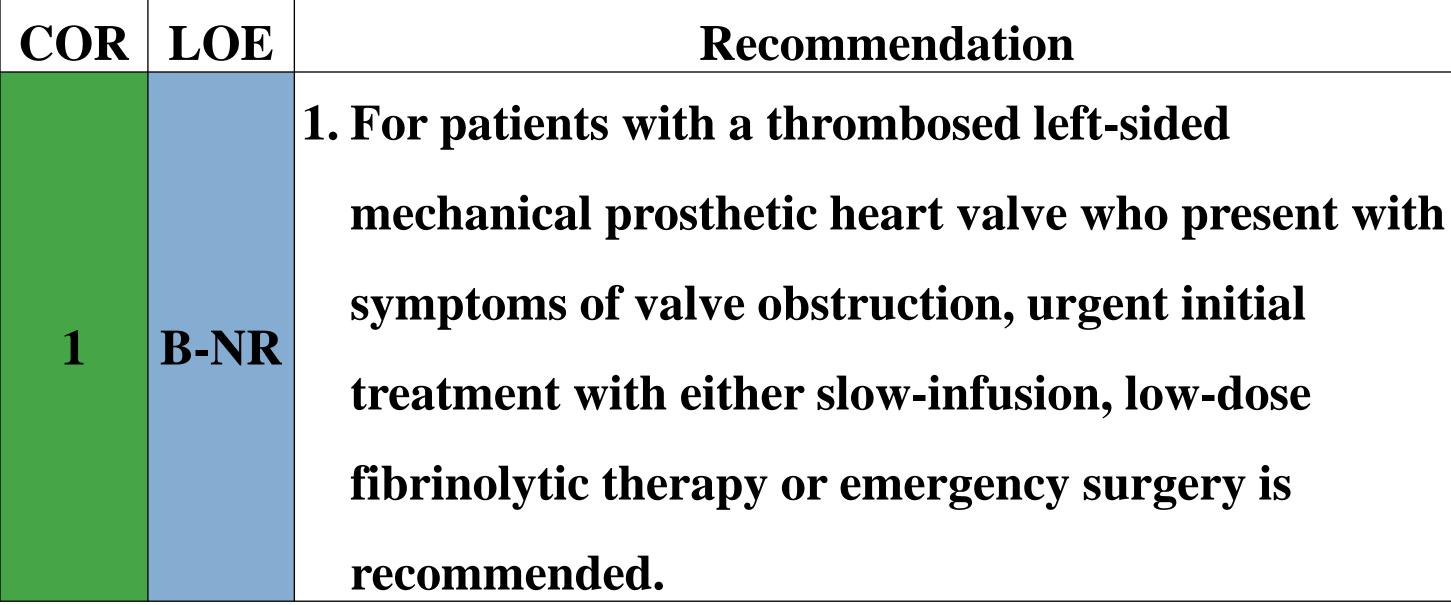


# Diagnosis of Acute Mechanical Valve Thrombosis

| COR | LOE         | Recommendation                                                                                                                                                                                                               |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 1. In patients with suspected mechanical pros<br>thrombosis, urgent evaluation with TTE, T<br>fluoroscopy, and/or multidetector CT imag<br>indicated to assess valve function, leaflet m<br>presence and extent of thrombus. |



### sthetic valve


# гее,

## ging is

## notion, and the



Intervention for Patients with Mechanical **Prosthetic Valve Thrombosis** 









# Table 23. Systemic Fibrinolysis Versus Surgery for ProstheticValve Thrombosis

| Favor Surgery                                | Favor Fibrinolysis                     |
|----------------------------------------------|----------------------------------------|
| Readily available surgical expertise         | No surgical expertise available        |
| Low surgical risk                            | High surgical risk                     |
| Contraindication to fibrinolysis             | No contraindication to fibrinolysis    |
| Recurrent valve thrombosis                   | First-time episode of valve thrombo    |
| NYHA class IV                                | NYHA class I, II, or III               |
| Large clot (> $0.8 \text{ cm}^2$ )           | Small clot ( $\leq 0.8 \text{ cm}^2$ ) |
| LA thrombus                                  | No LA thrombus                         |
| Concomitant CAD in need of revascularization | No or mild CAD                         |
| Other valve disease                          | No other valve disease                 |
| Possible pannus                              | Thrombus visualized                    |
| Patient choice                               | Patient choice                         |



| osis |       |
|------|-------|
|      |       |
|      |       |
|      |       |
|      |       |
|      |       |
|      |       |
|      | , 155 |



| COR        | LOE  | Recommendation                     |
|------------|------|------------------------------------|
| <b>2</b> a | C-LD | 1. In patients with suspected biop |
|            |      | valve thrombosis, 3D TEE or 4I     |
|            |      | imaging can be useful to rule ou   |
|            |      | thrombosis.                        |





# rosthetic **D**CT ut leaflet



Medical Therapy: In Ppatients with Ssuspected or Ceonfirmed Bbioprosthetic Vvalve Tthrombosis

| COR        | LOE         | Recommendation                                                                                                                                                                                         |
|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 1. In patients with suspected or confirm<br>bioprosthetic valve thrombosis who a<br>hemodynamically stable and have no<br>contraindications to anticoagulation,<br>treatment with a VKA is reasonable. |





# ned are initial



| COR        | LOE         | Recommendations                                                                                                                                                                                           |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | <b>B-NR</b> | 1. In patients with suspected mechanical or bioprosthetic<br>TTE and TEE are recommended to diagnosis the cause<br>valve obstruction, assess ventricular function, and estin<br>artery systolic pressure. |
| 1          | C-EO        | 2. In patients with mechanical valve stenosis, fluoroscopy recommended to assess motion of the mechanical valve                                                                                           |
| <b>2</b> a | C-LD        | <b>3. In patients with bioprosthetic valve stenosis, 3D TEE can be useful to rule out leaflet thrombosis.</b>                                                                                             |



# ic valve stenosis, se and severity of imate pulmonary

#### y or cine-CT is

#### e leaflets.

### or 4D CT imaging



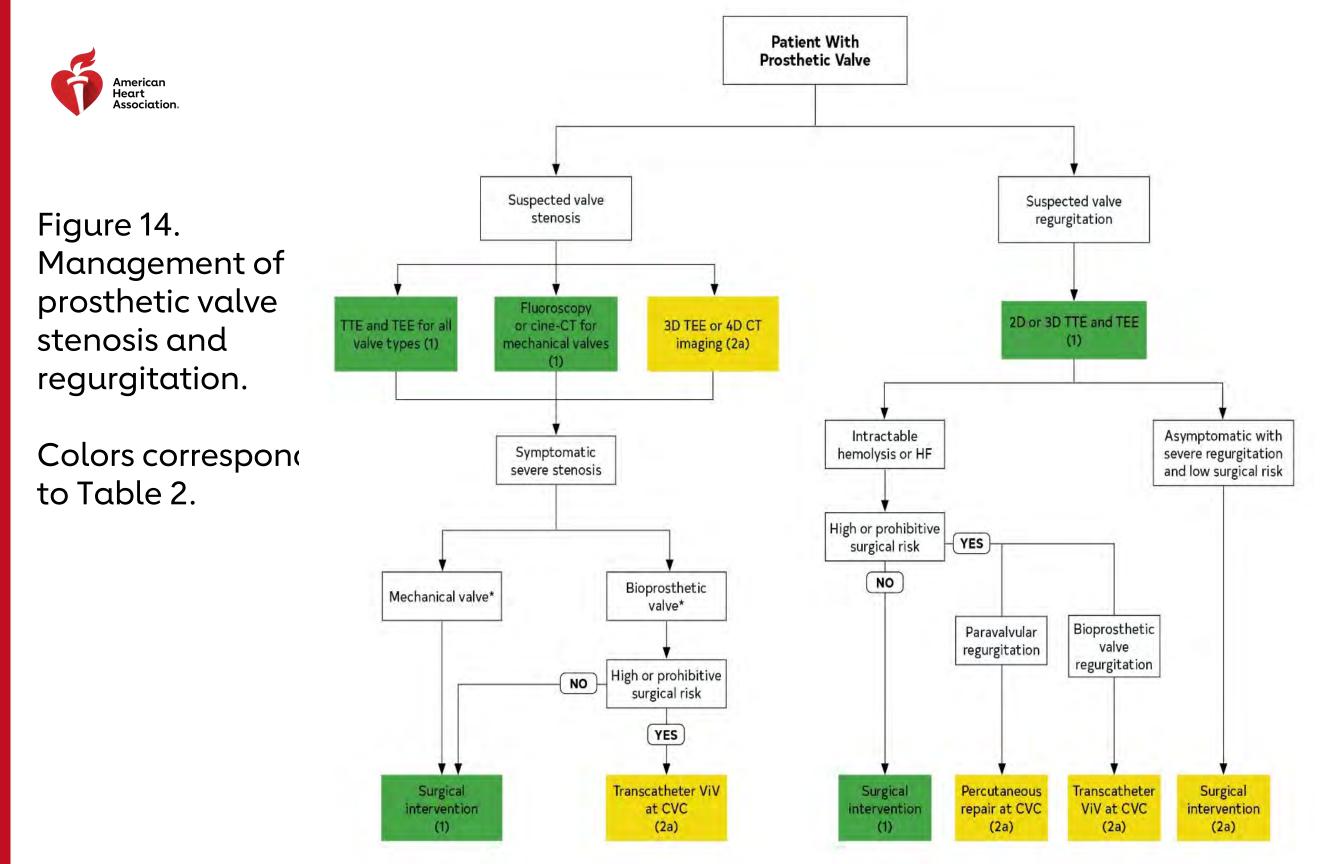
# Intervention of Patients with Prosthetic Valve Stenosis

| COR        | LOE  | Recommendations                                                                                                                                                                 |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | B-NR | 1. In patients with symptomatic severe stenosis of a biopro<br>mechanical prosthetic valve, repeat surgical intervention<br>surgical risk is high or prohibitive.               |
| <b>2</b> a | B-NR | 2. For severely symptomatic patients with bioprosthetic ao<br>and high or prohibitive surgical risk, a transcatheter Vi<br>reasonable when performed at a Comprehensive Valve ( |
| <b>2</b> a | B-NR | <ol> <li>For patients with significant bioprosthetic valve stenosis suspected or documented valve thrombosis, oral anticoa VKA is reasonable.</li> </ol>                        |



## osthetic or

### on is indicated unless


#### ortic valve stenosis

### iV procedure is

#### Center.

### is attributable to

#### agulation with a









| COR | LOE         | Recommendations                                                                                                                                                                                                             |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | <b>1. In patients with suspected mechanical or bioprosthet</b><br>regurgitation, TTE and TEE are recommended to d<br>cause and severity of the leak, assess ventricular fun<br>estimate pulmonary artery systolic pressure. |
| 1   | C-EO        | 2. In patients undergoing a transcatheter procedure for<br>prosthetic regurgitation, 3D TEE is recommended for<br>intraprocedural guidance.                                                                                 |





# tic valve letermine the nction, and

or paravalvular for



# Intervention: Patients with P<del>p</del>rosthetic V<del>v</del>alve R<del>r</del>egurgitation

| COR        | LOE         | Recommendations                                                                                                                              |
|------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | <b>B-NR</b> | 1. In patients with intractable hemolysis or H<br>to prosthetic transvalvular or paravalvular<br>is recommended unless surgical risk is high |
| <b>2</b> a | <b>B-NR</b> | 2. In asymptomatic patients with severe prostl<br>regurgitation and low operative risk, surger<br>reasonable.                                |



# IF attributable r leak, surgery h or prohibitive.

# thetic ery is



# Intervention: Patients with P<del>p</del>rosthetic V<del>v</del>alve R<del>r</del>egurgitation

| COR        | LOE         | Recommendations                                                                                                                                                                                                                                                                                                         |
|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 3. In patients with prosthetic paravalvular regurgitation with<br>either intractable hemolysis or NYHA class III or IV symptotic<br>are at high or prohibitive surgical risk and 3) have anatom<br>suitable for catheter-based therapy, percutaneous repair of<br>is reasonable when performed at a Comprehensive Valve |
| <b>2</b> a | <b>B-NR</b> | 4. For patients with severe HF symptoms caused by biopros regurgitation who are at high to prohibitive surgical risk, ViV procedure is reasonable when performed at a Compr Center.                                                                                                                                     |



### ith the following: 1)

#### nptoms and 2) who

#### omic features

#### of paravalvular leak

#### e Center.

#### sthetic valve

#### , a transcatheter

#### orehensive Valve



# Infective Endocarditis





# Diagnosis of Infective Endocarditis

| COR | LOE         | Recommendations                                                                                                                                                                                                                                     |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 1. In patients at risk of IE (e.g., those with cong<br>acquired VHD, previous IE, prosthetic heart<br>congenital or heritable heart malformations,<br>immunodeficiency states, or injection drug us<br>unexplained fever blood, culture samples sho |
| 1   | <b>B-NR</b> | 2. In patients with the recent onset of left-sided regurgitation, at least 2 sets of blood culture s be obtained.                                                                                                                                   |
| 1   | <b>B-NR</b> | 3. In patients with suspected IE, the Modified D should be used for diagnosis.                                                                                                                                                                      |



# genital or t valves, certain , ise) who have ould be obtained. valve samples should

## **Duke Criteria**



| COR | LOE         | Recommendations                                                                                                                                                                                                                                                            |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 4. Patients with IE should be evaluated and managed wi<br>with a multispecialty Heart Valve Team, which includ<br>disease specialist, cardiologist, and cardiac surgeon; a<br>anesthesiologist for surgically managed patients and a<br>patients with neurological events. |
| 1   | B-NR        | 5. In patients with suspected IE, TTE is recommended to<br>vegetations, characterize the hemodynamic severity o<br>assess ventricular function and pulmonary pressures,<br>complications.                                                                                  |



### vith consultation

### des an infectious

#### a cardiac

#### a neurologist for

#### to identify

#### of valvular lesions,

#### s, and detect



# Diagnosis of Infective Endocarditis

| COR | LOE         | Recommendations                                                                                                                                                                                                                                                                                                                     |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 6. In all patients with known or suspected IE and nondiagn<br>when complications have developed or are clinically susp<br>intracardiac device leads are present, TEE is recommend                                                                                                                                                   |
| 1   | <b>B-NR</b> | 7. In patients with IE who have a change in clinical signs or<br>new murmur, embolism, persistent fever, HF, abscess, or<br>heart block) and in patients at high risk of complications<br>infected tissue, large vegetation on initial echocardiogran<br>enterococcal, or fungal infections), TTE and/or TEE are r<br>reevaluation. |



# nostic TTE results, pected or when ded. or symptoms (e.g., atrioventricular s (e.g., extensive m, or staphylococcal, recommended for



| COR | LOE         | Recommendations                                                                                                                                                                                                                 |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 8. In patients undergoing valve surgery for IE, in<br>TEE is recommended.                                                                                                                                                       |
| 1   | <b>B-NR</b> | 9. In patients being considered for an early change<br>antibiotic therapy for the treatment of stable I<br>TEE before switching to oral therapy and a re-<br>days before completion of the oral antibiotic re-<br>be performed. |



# ntraoperative nge to oral IE, a baseline repeat TEE 1 to 3 egimen should



| COR        | LOE         | Recommendations                                                                                                                         |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 10. In patients with <i>Staphylococcus aureus</i> b<br>without a known source, TEE is reasona <sup>*</sup><br>possible IE.              |
| <b>2</b> a | <b>B-NR</b> | 11. In patients with a prosthetic valve in the<br>persistent fever without bacteremia or a<br>a TEE is reasonable to aid in the diagnos |



# bacteremia able to diagnose

# e presence of

### new murmur,

## sis of IE.



| COR        | LOE         | Recommendations                                                                                                                                           |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 12. In patients in whom the anatomy cannot be clearly de<br>echocardiography in the setting of suspected paravaly<br>imaging is reasonable.               |
| <b>2</b> a | <b>B-NR</b> | 13. In patients classified by Modified Duke Criteria as ha<br><sup>18</sup> F-fluorodeoxyglucose PET/CT is reasonable as adju<br>imaging.                 |
| 2b         | <b>B-NR</b> | 14. In patients with nosocomial <i>S. aureus</i> bacteremia with<br>entry from an extracardiac source, TEE might be con<br>concomitant staphylococcal IE. |



# elineated by vular infections, CT aving "possible IE," unct diagnostic

# h a known portal of

#### nsidered to detect

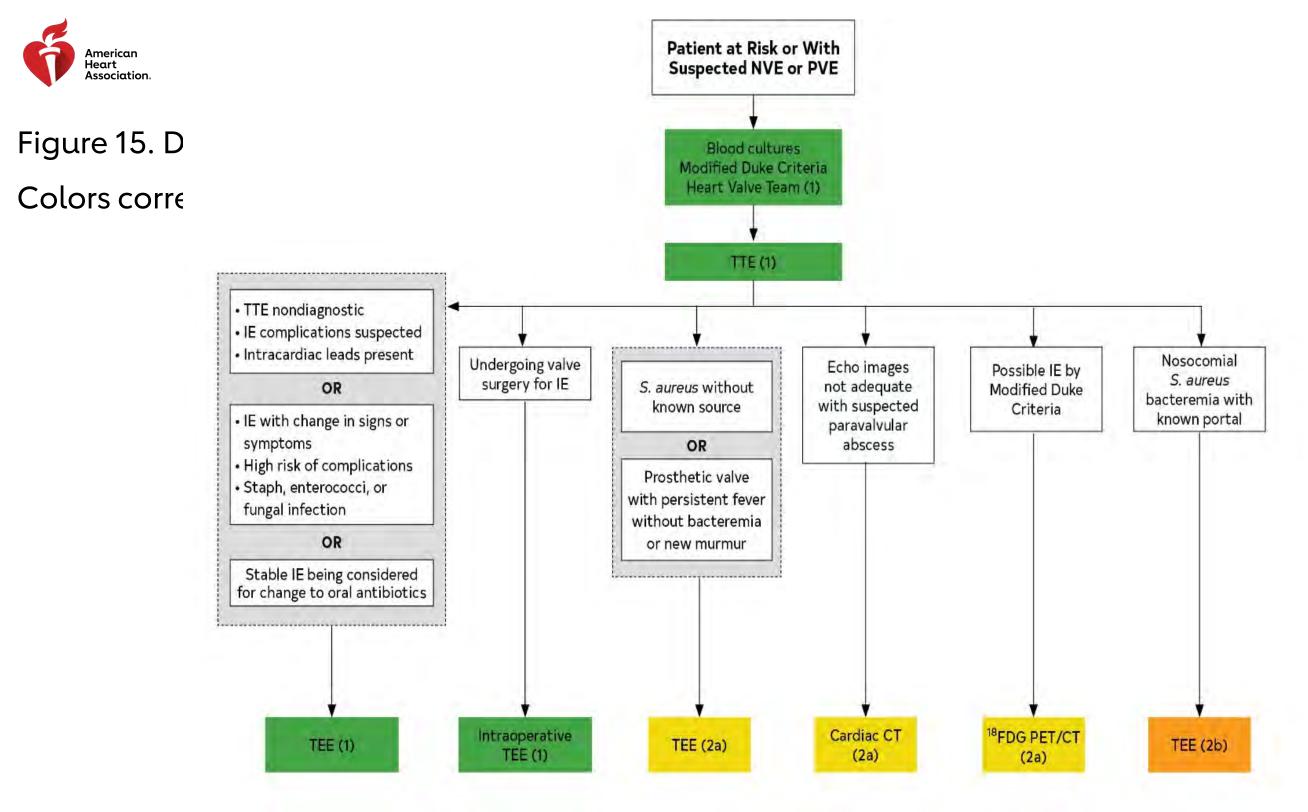









Table 24. **Diagnosis of IE** According to the Proposed **Modified Duke** Criteria

#### **Definite IE**

#### **Pathological criteria**

- Microorganisms demonstrated by culture or histological examination of a vegetation, a vegetation that has embolized, or an intracardiac abscess specimen; or
- Pathological lesions: vegetation or intracardiac abscess confirmed by histological examination showing active endocarditis

#### **Clinical criteria**

- 2 major criteria; or
- 1 major criterion and 3 minor criteria; or
- 5 minor criteria

#### **Possible IE**

- 1 major criterion and 1 minor criterion; or
- 3 minor criteria

#### Rejected

- Firm alternative diagnosis explaining evidence of IE; or
- Resolution of IE syndrome with antibiotic therapy for <4 d; or
- No pathological evidence of IE at surgery or autopsy, with antibiotic therapy for <4 d; or
- Does not meet criteria for possible IE as listed above







Table 25. Diagnosis of IE According to the Proposed Modified Duke Criteria

#### Major Criteria

#### **Blood culture positive for IE**

- Typical microorganisms consistent with IE from 2 separate blood cultures:
  - Viridans streptococci, Streptococcus bovis, HACEK group (Haemophilus spp., Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella spp., and Kingella kingae), S. aureus; or community-acquired enterococci, in the absence of a primary focus;

Or

- Microorganisms consistent with IE from persistently positive blood culture results, defined as follows:
  - At least 2 positive culture results of blood samples drawn 12 h apart; or
  - All of 3 or most of ≥4 separate culture samples of blood (with first and last samples drawn at least 1 h apart)
  - Single positive blood culture result for *Coxiella burnetii* or antiphase I IgG antibody titer >1:800









Table 25 cont. Diagnosis ofIE According to the Proposed Modified Duke Criteria

### **Major Criteria**

#### **Evidence of endocardial involvement**

Echocardiogram positive for IE defined as follows:

Oscillating intracardiac mass on valve or supporting structures, in the path Ο of regurgitant jets, or on implanted material in the absence of an alternative anatomic explanation

Abscess; or Ο

- New partial dehiscence of prosthetic valve Ο
- New valvular regurgitation (worsening or changing of preexisting murmur not sufficient)







#### **Minor Criteria**

- Predisposition, predisposing heart condition, or injection drug use
- Fever, temperature  $>38^{\circ}C$  (100.4°F)
- Vascular phenomena, major arterial emboli, septic pulmonary infarcts, mycotic aneurysm, intracranial hemorrhage, conjunctival hemorrhages, and Janeway lesions
- Immunological phenomena: glomerulonephritis, Osler's nodes, Roth's spots, and rheumatoid factor
- Microbiological evidence: positive blood culture but does not meet a major criterion as noted above\* or serological evidence of active infection with organism consistent with IE

\*Excludes single positive cultures for coagulase-negative staphylococci and organisms that do not cause IE.

Table 25 cont. Diagnosis of IE According to the Proposed Modified Duke Criteria







# Medical Therapy for IE

| COR        | LOE  | Recommendations                                                                                                                                                                                                                 |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | B-NR | <b>1. In patients with IE, appropriate antibiotic therapy should be ini</b><br>continued after blood cultures are obtained, with guidance from<br>sensitivity data and the infectious disease experts on the multidis<br>(MDT). |
| 1          | B-R  | 2. Patients with suspected or confirmed IE associated with drug us referred to addiction treatment for opioid substitution therapy.                                                                                             |
| <b>2</b> a | B-NR | 3. In patients with IE and with evidence of cerebral embolism or st<br>of the other indications for anticoagulation, it is reasonable to ter<br>discontinue anticoagulation.                                                    |



#### temporarily

#### r stroke, regardless

### g use should be

### idisciplinary team

#### om antibiotic

### initiated and





# Medical Therapy for IE

| COR     | LOE         | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2b      | B-R         | 4. In patients with left-sided IE caused by streptococcus, <i>Enterococcus</i> coagulase-negative staphylococci deemed stable by the MDT after in antibiotics, a change to oral antibiotic therapy may be considered if switch to oral therapy shows no paravalvular infection, if frequent a follow-up can be assured by the care team, and if a follow-up TEE or 3 days before the completion of the antibiotic course. |
| 2b      | <b>B-NR</b> | 5. In patients receiving VKA anticoagulation at the time of IE diagnos discontinuation of VKA anticoagulation may be considered.                                                                                                                                                                                                                                                                                          |
| 3: Harm | C-LD        | 6. Patients with known VHD should not receive antibiotics before bloc<br>obtained for unexplained fever.                                                                                                                                                                                                                                                                                                                  |



# *us faecalis, S. aureus,* or initial intravenous if TEE before the t and appropriate can be performed 1 to

#### osis, temporary

#### ood cultures are



| COR | LOE         | Recommendations                                                                                                                                                                              |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | <b>1. Decisions about the timing of surgical interverse should be made by a Heart Valve Team.</b>                                                                                            |
| 1   | <b>B-NR</b> | 2. In patients with IE who present with valve dy<br>resulting in symptoms of HF, early surgery (d<br>hospitalization and before completion of a full<br>course of antibiotics) is indicated. |



## ention for IE

### ysfunction

# during initial

### ll therapeutic



| COR | LOE         | Recommendations                                                                                                                                                                                             |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | B-NR        | 3. In patients with left-sided IE caused by <i>S. aureus</i> , a for other highly resistant organisms, early surgery (du hospitalization and before completion of a full therapy antibiotics) is indicated. |
| 1   | <b>B-NR</b> | 4. In patients with IE complicated by heart block, annual abscess, or destructive penetrating lesions, early surge hospitalization and before completion of a full therapy antibiotics) is indicated.       |



# fungal organism, luring initial apeutic course of

#### ular or aortic

# rgery (during initial apeutic course of



| COR | LOE         | Recommendations                                                                                                                                                                                                                                                               |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 5. In patients with IE and evidence of persistent infection<br>by persistent bacteremia or fevers lasting >5 days aft<br>appropriate antimicrobial therapy, early surgery (du<br>hospitalization and before completion of a full therapy<br>antibiotics) for IE is indicated. |
| 1   | <b>B-NR</b> | 6. In all patients with definite endocarditis and an imple<br>electronic device, complete removal of the pacemaker<br>systems, including all leads and the generator, is indi                                                                                                 |



# ion as manifested fter onset of uring initial peutic course of

# olanted cardiac er or defibrillator

#### licated.



## Intervention of Patients with IE

| COR. | LOE         | Recommendations                                                                                                                                                                                                                                    |
|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | C-LD        | 7. For patients with prosthetic valve endocarditis and relapsing infecti<br>recurrence of bacteremia after a complete course of appropriate an<br>subsequent negative blood culture results) without other identifiable<br>surgery is recommended. |
| 1    | C-LD        | 8. In patients with recurrent endocarditis and continued intravenous of<br>with addiction medicine is recommended to discuss the long-term p<br>patient's refraining from actions that risk reinfection before repeat<br>considered.               |
| 2a   | <b>B-NR</b> | 9. In patients with IE who present with recurrent emboli and persister<br>appropriate antibiotic therapy, early surgery (during initial hospita<br>completion of a full therapeutic course of antibiotics) is reasonable.                          |



## tion (defined as ntibiotics and ole source of infection,

### drug use, consultation

### prognosis for the

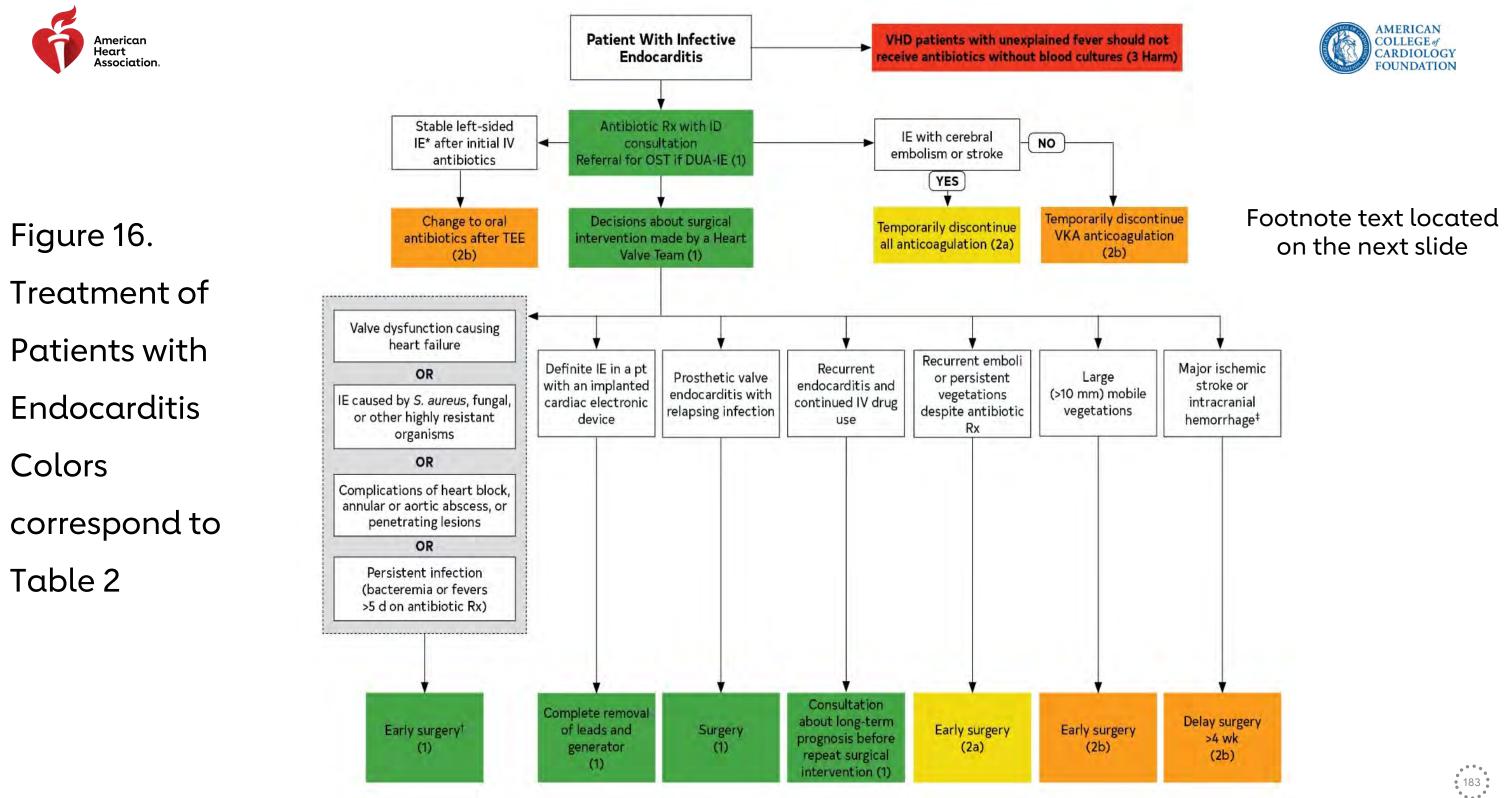
### t surgical intervention is

### ent vegetations despite

### alization and before



## Intervention of Patients with IE


| COR | LOE         | Recommendations                                                                                                                                                                                                                                                   |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2b  | <b>B-NR</b> | 10. In patients with native left-sided valve endocarditis<br>mobile vegetations >10 mm in length (with or witho<br>evidence of embolic phenomenon), early surgery (du<br>hospitalization and before completion of a full thera<br>antibiotics) may be considered. |
| 2b  | <b>B-NR</b> | 11. In patients with IE and an indication for surgery we<br>stroke but have no evidence of intracranial hemorrh<br>neurological damage, operation without delay may                                                                                               |
| 2b  | <b>B-NR</b> | 12. For patients with IE and major ischemic stroke with<br>neurological damage or intracranial hemorrhage, if<br>hemodynamically stable, delaying valve surgery for<br>may be considered.                                                                         |



### s who exhibit out clinical luring initial apeutic course of

### ho have suffered a hage or extensive be considered.

### th extensive if the patient is r at least 4 weeks









## Figure 16. Treatment of Patients with Endocarditis

\*IE caused by streptococcus, *E. faecalis*, *S. aureus*, or coagulase-negative staphylococci

deemed stable by the Heart Valve Team.

<sup>†</sup>Early surgery defined as during initial hospital course and before completion of a full

course of appropriate antibiotics.

<sup>‡</sup>In patients with an indication for surgery and a stroke but no evidence of intracranial

hemorrhage or extensive neurological damage, surgery without delay may be considered.







# Pregnancy and VHD





# Initial Management of Women With VHD Before and During Pregnancy

| COR | LOE         | Recommendations                                                                                          |
|-----|-------------|----------------------------------------------------------------------------------------------------------|
| 1   | <b>B-NR</b> | 1. Women with suspected valve disease who are consored pregnancy should undergo a clinical evaluation ar |
|     |             | pregnancy.                                                                                               |
| 1   | <b>B-NR</b> | 2. Women with severe valve disease (Stages C and D considering pregnancy should undergo pre-pregn        |
|     |             | by a cardiologist with expertise in managing wom<br>during pregnancy.                                    |



## sidering and TTE before

### D) who are

## nancy counseling nen with VHD



## Initial Management of Women With VHD Before and During Pregnancy

| COR        | LOE         | Recommendations                                                                                                                                                                                                                                                          |
|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | <b>B-NR</b> | 3. Pregnant women with severe valve disease (Stages C<br>monitored in a tertiary-care center with a dedicated<br>of cardiologists, surgeons, anesthesiologists, and mate<br>medicine obstetricians with expertise in the managen<br>cardiac conditions during pregnancy. |
| <b>2</b> a | <b>B-NR</b> | 4. In asymptomatic women with severe valve disease (S considering pregnancy, exercise testing is reasonable for risk assessment.                                                                                                                                         |



# and D) should be **Heart Valve Team** ternal-fetal ment of high-risk Stage C1) who are e before pregnancy



| COR     | LOE  | Recommendations                                                                                                               |
|---------|------|-------------------------------------------------------------------------------------------------------------------------------|
| 2a      | C-LD | 1. In pregnant women with VHD, beta-blocker medicat<br>reasonable as required for heart rate control or treat<br>arrhythmias. |
| 2a      | C-LD | 2. In pregnant women with VHD and HF symptoms (St<br>medications are reasonable if needed for volume over                     |
| 3: Harm | B-NR | <b>3. In pregnant women with VHD, ACE inhibitors and A given because of fetal risk.</b>                                       |



# tions are

## tment of

## Stage D), diuretic

### rload.

## **ARBs should not be**



## Pre-Pregnancy Intervention in Women With VHD

| COR | LOE  | Recommendations                                                                                                                                                                                                                                                                   |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | B-NR | 1. In symptomatic women with severe VHD who are considering pr<br>before pregnancy is recommended on the basis of standard indica                                                                                                                                                 |
| 1   | С-ЕО | 2. In women who require a valve intervention before pregnancy, the<br>valve should be based on a shared decision-making process that a<br>patient's values and preferences, including discussion of the risks<br>during pregnancy and the reduced durability of bioprosthetic val |
| 2a  | C-LD | 3. In asymptomatic women with severe rheumatic MS (mitral valve<br>C1) who are considering pregnancy, PMBC at a Comprehensive<br>reasonable before pregnancy for those who have favorable valve                                                                                   |



## oregnancy, intervention cations.

### he choice of prosthetic

### accounts for the

### s of mechanical valves

### alves in young women.

### ve area ≤1.5 cm², Stage

### e Valve Center is

### e morphology.



| COR        | LOE         | Recommendations                                                                                                                                                                 |
|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 4. In women of childbearing age who require valve re<br>bioprosthetic valves are preferred over mechanical<br>the increased maternal and fetal risks of mechanica<br>pregnancy. |
| <b>2</b> a | C-EO        | 5. In asymptomatic women with severe AS (aortic vel-<br>mean pressure gradient ≥40 mm Hg, Stage C1) who<br>pregnancy, valve intervention before pregnancy is 1                  |





## eplacement, l valves because of cal heart valves in

## elocity $\geq$ 4.0 m/s or o are considering

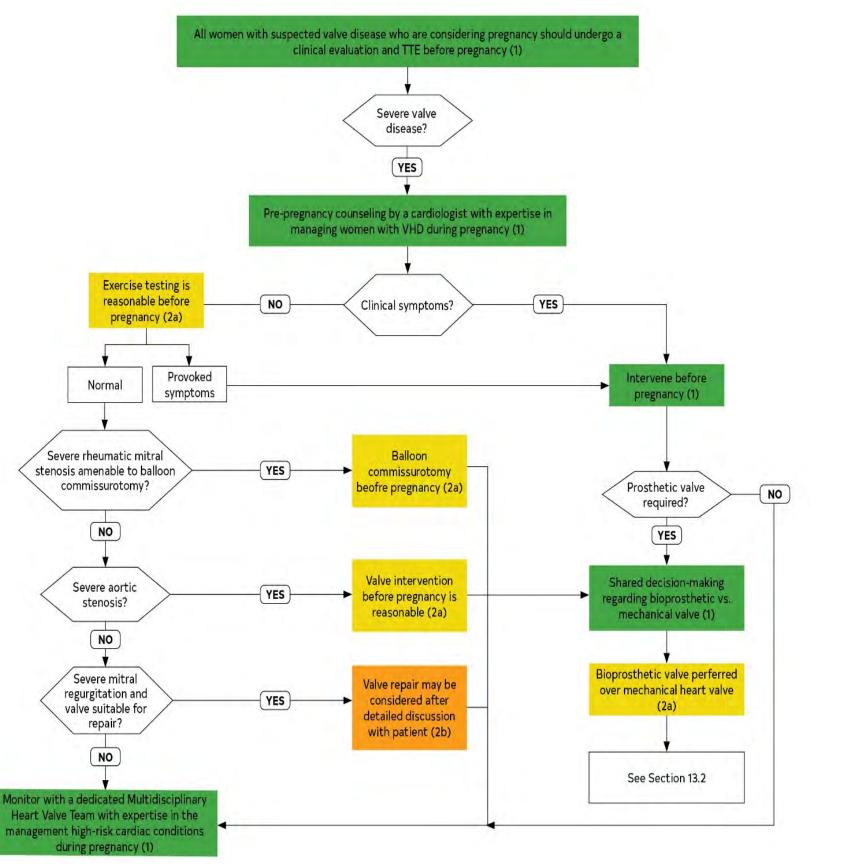
### reasonable.



| COR | LOE  | Recommendations                                                                                                                                                                                                                                                                                                                                                         |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2b  | C-EO | <ul> <li>6. In asymptomatic women with severe AS (aortic velocity ≥4.0 m gradient ≥40 mm Hg, Stage C1) who are considering pregnanc 1 criteria for intervention, and have a preconception evaluatio absence of symptoms (including normal exercise stress testing measurements), medical management during pregnancy may avoid prosthetic valve replacement.</li> </ul> |
| 2b  | C-EO | 7. In asymptomatic women with severe MR (Stage C1) and a value<br>who are considering pregnancy, value repair before pregnancy<br>Value Center may be considered but only after detailed discuss<br>about the risks and benefits of the surgery and its effect on fut                                                                                                   |



### m/s or mean pressure


- cy, do not meet COR
- on confirming the
- g and serum BNP
- be considered to

## lve suitable for repair y at a Comprehensive ssion with the patient

ture pregnancies.



Figure 17. Preconception management of women with native valve disease.









## Intervention During Pregnancy in Women with VHD

| COR        | LOE         | Recommendations                                                                                                                                                                                                                                    |
|------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a         | <b>B-NR</b> | 1. In pregnant women with severe AS (mean pressure gradier<br>D), valve intervention during pregnancy is reasonable if th<br>deterioration or if there are NYHA class III or IV HF symp                                                            |
| 2a         | B-NR        | 2. In pregnant women with severe rheumatic MS (mitral v<br>Stage D) and with valve morphology favorable for H<br>symptomatic with NYHA class III or IV HF symptoms desp<br>PMBC is reasonable during pregnancy if it is performed<br>Valve Center. |
| 2a         | C-LD        | 3. In pregnant women with severe valve regurgitation and w<br>HF symptoms (Stage D) refractory to medical therapy<br>reasonable during pregnancy.                                                                                                  |
| 3:<br>Harm | C-LD        | 4. In pregnant women with VHD, valve surgeries should not absence of severe HF symptoms refractory to medical thera                                                                                                                                |



## ent ≥40 mm Hg, Stage here is hemodynamic ptoms. valve area ≤1.5 cm<sup>2</sup>, PMBC who remain spite medical therapy, at a Comprehensive with NYHA class IV py, valve surgery is

t be performed in the apy.



## Initial Management of Prosthetic Heart Valves in Pregnant Women

| COR | LOE         | Recommendations                                                                                                                                                                                                                     |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-EO        | 1. Women with a prosthetic valve should undergo pre-pregincluding echocardiography, by a cardiologist with exp<br>women with VHD during pregnancy.                                                                                  |
| 1   | C-EO        | 2. Pregnant women with a mechanical prosthesis should<br>tertiary-care center with a dedicated MDT of cardi<br>anesthesiologists, and maternal-fetal medicine obstetric<br>in the management of high-risk cardiac conditions during |
| 1   | <b>B-NR</b> | <b>3.</b> Women with mechanical heart valves considering pre-<br>counselled that pregnancy is high risk and that there is<br>strategy that is consistently safe for the mother and baby.                                            |
| 1   | <b>B-NR</b> | 4. Pregnant women with a mechanical prosthetic valve w valve obstruction or experience an embolic event should                                                                                                                      |



### egnancy assessment, pertise in managing

### be monitored in a liologists, surgeons, cians with expertise ng pregnancy. regnancy should be s no anticoagulation y. who have prosthetic

## undergo a TEE.



## Anticoagulation for Pregnant Women With **Mechanical Prosthetic Heart Valves**

| COR | LOE         | Recommendations                                                                                                                                                                                                                                                                                                                                                                              |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | B-NR        | 1. Pregnant women with mechanical prostheses should receive therap with frequent monitoring during pregnancy.                                                                                                                                                                                                                                                                                |
| 1   | B-NR        | 2. Women with mechanical heart valves who cannot maintain therapower with frequent monitoring should be counseled against pregnancy.                                                                                                                                                                                                                                                         |
| 1   | <b>B-NR</b> | 3. Women with mechanical heart valves and their providers should us<br>making to choose an anticoagulation strategy for pregnancy. Wome<br>informed that VKA during pregnancy is associated with the lowest<br>maternal complications but the highest likelihood of miscarriage, f<br>congenital abnormalities, particularly if taken during the first trim<br>warfarin dose exceeds 5 mg/d. |





### peutic anticoagulation

### peutic anticoagulation

## use shared decisionnen should be st likelihood of fetal death, and mester and if the



## Anticoagulation for Pregnant Women With Mechanical Prosthetic Heart Valves

| COR | LOE  | Recommendations                                                                                                                                                                                                                                                                |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-LD | 4. Pregnant women with mechanical valve prostheses who are on warfarin<br>twice-daily LMWH (with a target anti-Xa level of 0.8 U/mL to 1.2 U/mL<br>dose) or intravenous UFH (with an activated partial thromboplastin tim<br>control) at least 1 week before planned delivery. |
| 1   | C-LD | 5. Pregnant women with mechanical valve prostheses who are on LMWH<br>(with an aPTT 2 times control) at least 36 hours before planned delivery                                                                                                                                 |
| 1   | C-LD | 6. Pregnant women with valve prostheses should stop UFH at least 6 hour vaginal delivery.                                                                                                                                                                                      |
| 1   | C-LD | 7. If labor begins or urgent delivery is required in a woman therapeutical a VKA, cesarean section should be performed after reversal of anticoa                                                                                                                               |



### n should switch to

### L at 4 to 6 hours after

### me [aPTT] 2 times

### H should switch to UFH

### ry.

### irs before planned

## ally anticoagulated with agulation.

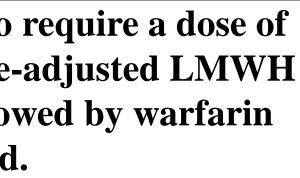


## Anticoagulation for Pregnant Women With Mechanical Prosthetic Heart Valves

| COR        | LOE         | Recommendations                                                                                                                                                                                                                                                                     |
|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a         | <b>B-NR</b> | 8. For pregnant women with mechanical prostheses who requir<br>≤5 mg/d to maintain a therapeutic INR, continuation of<br>trimesters is reasonable after full discussion with the patie<br>benefits.                                                                                 |
| <b>2</b> a | B-NR        | 9. For pregnant women with mechanical prostheses who require<br>to achieve a therapeutic INR, dose-adjusted LMWH (with a ta<br>0.8 to 1.2 U/mL at 4 to 6 hours after dose) at least 2 times per<br>trimester, followed by warfarin during the second and<br>reasonable.             |
| <b>2</b> a | <b>B-NR</b> | 10. For pregnant women with mechanical prostheses who requir<br>>5 mg/d to achieve a therapeutic INR, and for whom dose<br>unavailable, dose-adjusted continuous intravenous UFF<br>trimester (with aPTT 2 times control), followed by warfarin<br>third trimesters, is reasonable. |



### re a dose of warfarin f warfarin for all 3 ient about risks and


e >5 mg/d of warfarin target anti-Xa level of er day during the first third trimesters, is

ire a dose of warfarin e-adjusted LMWH is 'H during the first in for the second and



## Anticoagulation for Pregnant Women With Mechanical Prosthetic Heart Valves

| COR       | LOE         | Recommendations                                                                                                                                                                                                                                    |  |
|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2a        | <b>B-NR</b> | 11. For hemodynamically stable pregnant women with ob<br>mechanical valve thrombosis, it is reasonable to n<br>infusion, low-dose fibrinolytic therapy.                                                                                            |  |
| <b>2b</b> | <b>B-NR</b> | 12. For pregnant women with mechanical prostheses who<br>warfarin dose >5 mg/d to achieve a therapeutic INR, o<br>LMWH (with a target anti-Xa level of 0.8 to 1.2 U/mL<br>after dose) at least 2 times per day for all 3 trimesters<br>considered. |  |
| <b>2b</b> | <b>B-NR</b> | 13. For pregnant women with mechanical prostheses who<br>warfarin ≤5 mg/d to maintain a therapeutic INR, dose-<br>at least 2 times per day during the first trimester, follow<br>for the second and third trimesters, may be considered            |  |



## dose-adjusted L at 4 to 6 hours may be

# o require a

## bstructive left-sided manage with slow-







## Anticoagulation for Pregnant Women With Mechanical Prosthetic Heart Valves

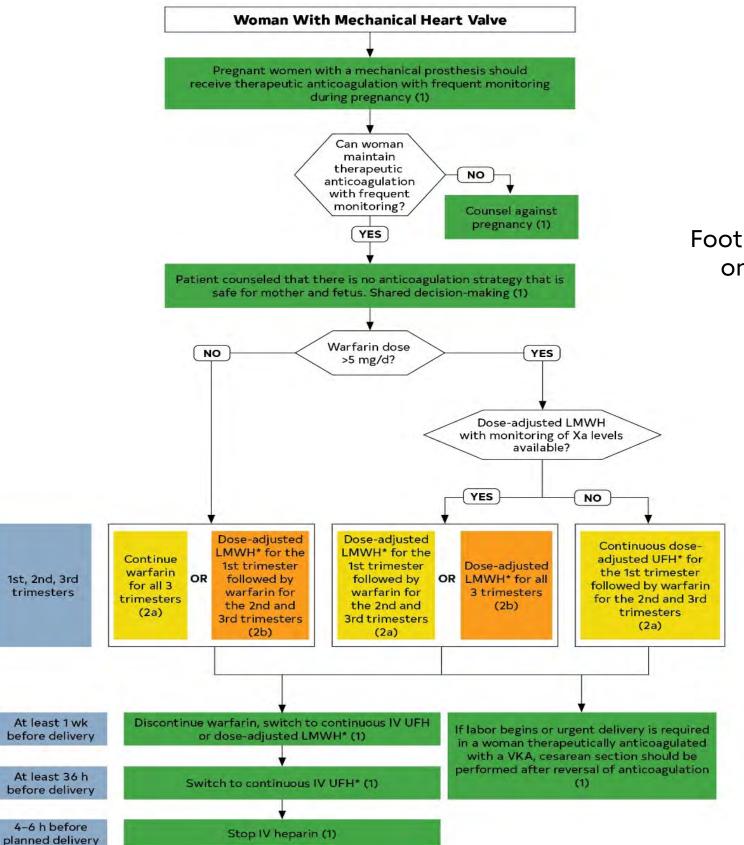
| COR        | LOE         | Recommendations                                                                                                                                                               |
|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2b</b>  | <b>B-NR</b> | 14. For pregnant women with mechanical prostheses, aspir<br>daily may be considered, in addition to anticoagulation.                                                          |
| 3:<br>Harm | <b>B-NR</b> | 15. For pregnant women with mechanical prostheses, LMW<br>administered unless anti-Xa levels are monitored 4 to 6<br>administration and dose is adjusted according to levels. |
| 3:<br>Harm | B-R         | 16. For patients with mechanical valve prostheses, anticoag direct thrombin inhibitor, dabigatran, should not be ad                                                           |
| 3:<br>Harm | C-EO        | 17. The use of anti-Xa direct oral anticoagulants with mech<br>in pregnancy has not been assessed and is not recommen                                                         |



## rin 75 to 100 mg

### •

## WH should not be 5 hours after


### gulation with the Iministered.

## hanical heart valves ended.



## Figure 18. Anticoagulation for prosthetic mechanical heart valves in women during pregnancy.

Colors corresponds to Table 2.





## Footnote text located on the next slide





Figure 18. Anticoagulation for prosthetic mechanical heart valves in women during pregnancy.

\* Dose-adjusted LMWH should be given at least 2 times per day, with close monitoring of anti-Xa levels. Target to Xa level of 0.8 to 1.2 U/mL, 4 to 6 hours after dose. Trough levels may aid in maintaining patient in therapeutic range. Continuous UFH should be adjusted to aPTT 2 times control.







# Surgical Considerations





## Management of CAD in Patients Undergoing TAVI

| COR | LOE  | Recommendations                                                                                                                                                                                                                                                                                                                                   |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-EO | 1. In patients undergoing TAVI, 1) contrast-enhanced coronary CT angio<br>a low pretest probability for CAD) or 2) an invasive coronary angiogra<br>assess coronary anatomy and guide revascularization.                                                                                                                                          |
| 2a  | C-LD | 2. In patients undergoing TAVI with significant left main or proximal CA angina, revascularization by PCI before TAVI is reasonable.                                                                                                                                                                                                              |
| 2a  | C-LD | 3. In patients with significant AS and significant CAD (luminal reduction<br>fractional flow reserve <0.8, instantaneous wave-free ratio <0.89) consi<br>bifurcation left main and/or multivessel CAD with a SYNTAX (Synerg<br>Coronary Intervention With Taxus and Cardiac Surgery) score >33, SA<br>reasonable and preferred over TAVI and PCI. |



### iography (in patients with ram is recommended to

### **AD** with or without

### n >70% diameter,

### sisting of complex

### gy Between Percutaneous

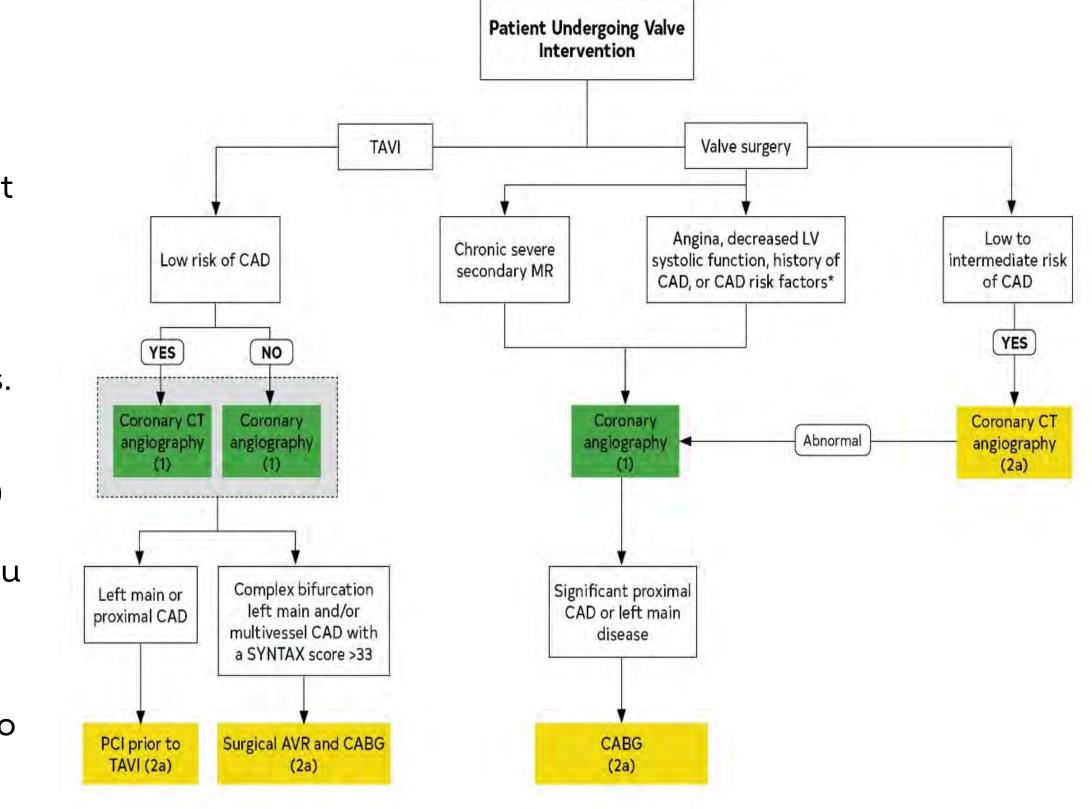

### SAVR and CABG are



Figure 19. Management of CAD in patients undergoing valve interventions.

\*Including men age >40 years and postmenopau sal women.

Colors correspond to Table 2.









## Management of CAD in Patients Undergoing Valve Surgery

| COR        | LOE         | Recommendations                                                                                                                                                                                                                                                         |
|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COK        | LOE         | 1. In patients with symptoms of angina, objective evidence of ischemia, de                                                                                                                                                                                              |
| 1          | C-LD        | function, history of CAD, or coronary risk factors (including men >40 y postmenopausal women), invasive coronary angiography is indicated be                                                                                                                            |
| 1          | C-LD        | 2. In patients with chronic severe secondary MR, invasive coronary angiog performed as part of the evaluation.                                                                                                                                                          |
| 2a         | <b>B-NR</b> | <b>3.</b> In selected patients with a low to intermediate pretest probability of CA coronary CT angiography is reasonable to exclude the presence of signi                                                                                                              |
| <b>2</b> a | C-LD        | 4. In patients undergoing valve repair or replacement with significant pro-<br>reduction in luminal diameter in major coronary arteries or ≥50% redu<br>diameter in the left main coronary artery and/or physiologically signific<br>reasonable for selective patients. |



### ecreased LV systolic

### years of age and

### oefore valve intervention. ography should be

### AD, contrast-enhanced

### ificant obstructive CAD.

### oximal CAD (≥70%

### luction in luminal

### icance), CABG is



## Intervention for AF in Patients With VHD

| COR | LOE                                                                                                                                                                                         | Recommendations                                                                                                                                                                                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-LD 1. In patients with VHD and AF for whom surgical interpotential symptomatic benefits and additional proceeds arrhythmia surgery at the time of cardiac valvular structure the patient. |                                                                                                                                                                                                 |
| 2a  | B-R                                                                                                                                                                                         | 2. For symptomatic patients with paroxysmal or persistent AF will valvular surgery, surgical pulmonary vein isolation or a maze pulmoneficial to reduce symptoms and prevent recurrent arrhythm |
| 2a  | <ul> <li>B-NR</li> <li>B-NR</li> <li>appendage ligation/excision is reasonable to reduce the rise</li> <li>events.</li> </ul>                                                               |                                                                                                                                                                                                 |



### is planned, the

### ks of adjunctive

### ould be discussed with

### who are undergoing

### procedure can be

### mias.

### ve surgery, LA

### f thromboembolic

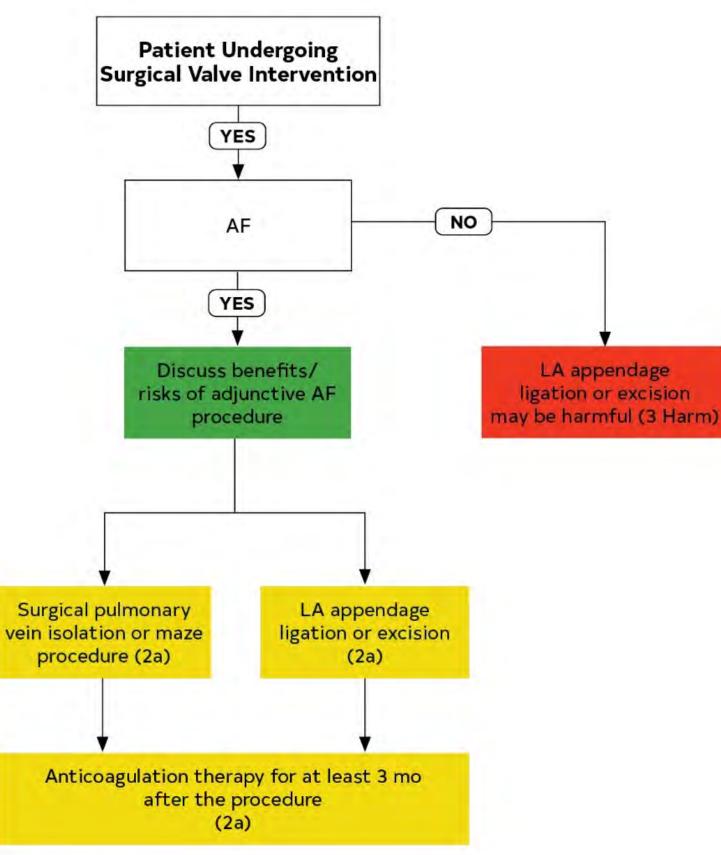


| COR        | LOE         | Recommendations                                                                                                                                                             |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | <b>B-NR</b> | 4. In patients undergoing LA surgical ablation of<br>arrhythmias and/or LA appendage ligation/ex<br>anticoagulation therapy is reasonable for at le<br>after the procedure. |
| 3:<br>Harm | <b>B-NR</b> | 5. For patients without atrial arrhythmias who a<br>valvular surgery, LA appendage<br>occlusion/exclusion/amputation is potentially                                         |





## of atrial xcision, east 3 months


## are undergoing

## harmful.



Figure 20. Intervention for AF in patients with VHD.

Colors correspond to Table 2.









# Noncardiac Surgery in Patients with VHD





## Diagnosis in Patients With VHD Undergoing Noncardiac Surgery

| COR | LOE  | Recommendation                                                                                                                                                                        |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-EO | 1. In patients with clinically suspected n<br>greater degrees of valvular stenosis on<br>regurgitation who are undergoing non<br>surgery, preoperative echocardiograp<br>recommended. |



## moderate or

### r

## oncardiac phy is



Management of the Symptomatic Patient With VHD Undergoing Noncardiac Surgery

| COR | LOE  | Recommendation                                                                                                                                                                                                                                    |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | C-EO | 1. In patients who meet standard indications for VHD (replacement and repair) on the base and disease severity, intervention should before elective noncardiac surgery to reduce risk if possible, depending on the urgency noncardiac procedure. |



# for intervention asis of symptoms be performed ce perioperative and risk of the



## Management of the Asymptomatic Patient With VHD Undergoing Noncardiac Surgery

| COR        | LOE  | Recommendations                                                                                                                                                                                                                                                  |
|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> a | B-R  | 1. In asymptomatic patients with moderate or greater degrees of AS a function, it is reasonable to perform elective noncardiac surgery.                                                                                                                          |
| <b>2</b> a | C-EO | 2. In asymptomatic patients with moderate or greater degrees of rheat<br>than severe pulmonary hypertension (pulmonary artery systolic pa<br>is reasonable to perform elective noncardiac surgery.                                                               |
| <b>2</b> a | C-LD | 3. In asymptomatic patients with moderate or greater degrees of MR systolic function with less than severe pulmonary hypertension (pu systolic pressure <50 mm Hg), it is reasonable to perform elective reasonable to perform the systolic pressure <50 mm Hg). |
| <b>2</b> a | C-LD | 4. In asymptomatic patients with moderate or greater degrees of AR systolic function, it is reasonable to perform elective noncardiac su                                                                                                                         |



### and normal LV systolic

### eumatic MS with less

### pressure <50 mm Hg), it

### **R** and normal LV

### oulmonary artery

### e noncardiac surgery.

### **R** and normal LV

### surgery.



## Table 26. Evidence Gaps and Future Directions for Patients With VHD

| Evidence Gaps                            | Future Directions                                                                                  |
|------------------------------------------|----------------------------------------------------------------------------------------------------|
| Identification of patients at risk and v | valve disease prevention (Stage A)                                                                 |
| Disease mechanisms                       | Basic science to identify specific targets for medical therapy                                     |
| Rheumatic heart disease                  | Primary and secondary prevention                                                                   |
| Calcific valve disease                   | <ul> <li>Identification of patients at risk</li> </ul>                                             |
|                                          | • Risk factor intervention                                                                         |
|                                          | • Prevention of disease initiation                                                                 |
| Medical therapy for progressive valve    | e disease (Stage B)                                                                                |
| Disease mechanisms                       | Basic science to identify specific targets to slow or reverse disease progression                  |
| Medical intervention                     | Targeted therapy using advanced imaging endpoints to study disease mechanisms                      |
| Ventricular and vascular interactions    | • Dynamic interplay between valve disease severity and changes in ventricular anatomy and function |
|                                          | <ul> <li>Modulation of ventricular and vascular dysfunction in patients with<br/>VHD</li> </ul>    |





## Table 26. Evidence Gaps and Future Directions for Patients With VHD

| Evidence Gaps                         | Future Directions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>Optimal timing of intervention</b> | Optimal timing of intervention (Stage C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Improved measures of disease severity | <ul> <li>Validation of newer measures of LV size (e.g., volumes in function (e.g., strain) for timing of intervention decisions.</li> <li>Evaluation of nonimaging parameters (serum markers and other strain) for the strain of t</li></ul> |  |  |
| Timing of intervention                | <ul> <li>Timing of intervention in asymptomatic patients with valve reg</li> <li>Intervention for asymptomatic severe AS</li> <li>Intervention for moderate AS with LV dysfunction</li> <li>Identification of patients with secondary MR who benefit from</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Patient-centered research             | Involvement of patients in identifying research questions, study of outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Inclusion of diverse patient groups   | Adequate representation of diverse patient populations in RCTs f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Decision aids                         | <ul> <li>Development and validation of improved decision aids for sha patients</li> <li>Implementation and validation of decision algorithms for ph Teams</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |



### nstead of dimension) and

### ner novel approaches)

### gurgitation

### n intervention

### design, and definition of

### for VHD

ared decision-making with

hysicians and Heart Valve



# Table 26. Evidence Gaps and Future Directions for Patients With VHD

| Evidence Gaps                                           | Future Directions                                                  |  |
|---------------------------------------------------------|--------------------------------------------------------------------|--|
| Intervention options and long-term management (Stage D) |                                                                    |  |
| Improved prosthetic valves                              | • Durability of TAVI valves                                        |  |
|                                                         | • Nonthrombogenic durable surgical and transcatheter valves        |  |
| Optimal antithrombotic therapy                          | • Alternatives to VKA anticoagulation for mechanical valves        |  |
|                                                         | <ul> <li>Management of anticoagulation during pregnancy</li> </ul> |  |
|                                                         | • Optimal antithrombotic therapy after TAVI                        |  |
| Medical therapy after AVR                               | • Medical therapy to address ventricular and vascular function     |  |
|                                                         | • Optimal blood pressure targets after valve intervention          |  |
| Lower procedural risk                                   | • Approaches to lower surgical morbidity and mortality rates       |  |
|                                                         | <ul> <li>Prevention of postoperative AF</li> </ul>                 |  |
|                                                         | • Noninvasive approaches for correction of valve dysfunction       |  |
| Prevention of complications                             | • Approaches to avoid need for permanent pacing after SAVR of      |  |
|                                                         | • Better prevention, diagnosis and treatment of endocarditis.      |  |
|                                                         | • Better prevention of thromboembolic events.                      |  |
| Promoting equity                                        | • Identify and address disparities in outcomes and surviva         |  |
|                                                         | populations                                                        |  |
|                                                         | • Develop novel, cost-effective approaches for long-term managed   |  |
|                                                         | • Expand access to therapies for valvular dysfunction              |  |



| or TAVI                   |
|---------------------------|
|                           |
|                           |
| al across diverse patient |
| agement in rural settings |



## Abbreviations

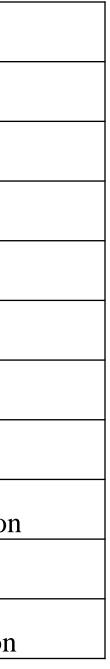
| Abbreviation | Meaning/Phrase                        |
|--------------|---------------------------------------|
| 2D           | 2-dimensional                         |
| 3D           | 3-dimensional                         |
| ACE          | angiotensin-converting enzyme         |
| AF           | atrial fibrillation                   |
| ARB          | angiotensin receptor blocker          |
| aPTT         | activated partial thromboplastin time |
| AR           | aortic regurgitation                  |
| AS           | aortic stenosis                       |
| AVR          | aortic valve replacement              |







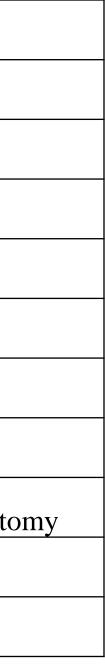
| Meaning/Phrase                           |
|------------------------------------------|
| bicuspid aortic valve                    |
| B-type natriuretic peptide               |
| coronary artery bypass graft             |
| coronary artery disease                  |
| cardiac magnetic resonance               |
| Class of Recommendation                  |
| computed tomography                      |
| electrocardiogram                        |
| guideline-directed management and therap |
|                                          |


### AMERICAN COLLEGE of CARDIOLOGY FOUNDATION





| Meaning/Phrase                           |
|------------------------------------------|
| heart failure                            |
| infective endocarditis                   |
| international normalized ratio           |
| left atrium (left atrial)                |
| low-molecular-weight heparin             |
| Level of Evidence                        |
| left ventricle (left ventricular)        |
| left ventricular end-diastolic dimension |
| left ventricular ejection fraction       |
| left ventricular end-systolic dimension  |
|                                          |








| aning/Phrase            |
|-------------------------|
|                         |
| liscplinaryy team       |
| al regurgitation        |
| itral stenosis          |
| n K oral anticoagulant  |
| k Heart Association     |
| s coronary intervention |
| mission tomography      |
| al balloon commissuroto |
| nized control trial     |
| cle (right ventricular) |
|                         |





## Abbreviations



| Abbreviation | Meaning/Phrase                                |
|--------------|-----------------------------------------------|
| SAVR         | surgical aortic valve replacement             |
| TAVI         | transcatheter aortic valve implantation       |
| TR           | tricuspid regurgitation                       |
| TEE          | transesophageal echocardiography (echocard    |
| TTE          | transthoracic echocardiography (echocardio    |
| TEER         | TEER for transcatheter edge to edge mitral va |
| UFH          | unfractionated heparin                        |
| VHD          | valvular heart disease                        |
| ViV          | valve-in-valve                                |
| VKA          | vitamin K antagonist                          |



### on

### diogram)

### iogram)

### alve repair