
Cardiovascular Genomics in 2007: Careers in Genomics and Proteomics

Christopher J. O'Donnell MD MPH

No Disclosures

ACC How to Become a Cardiovascular Investigator

November 9, 2007

 $\textcircled{\blue}$

Department of Health and Human Services • National Institutes of Health National Heart Lung and Blood Institute People Science Health

D IL SCHOOL PARTNERS. ng Affiliate A Founding Member

My Story: the Sculpting of a Cardiovascular Investigator

2007

1987 — Medical School Residency 1st Clin Research

> CV Fellowship Epi Fellow+MPH

> > Faculty Job I "50/50"

Faculty Job IIa "80/20" NIH+Hospital "Major" in Genetic Epidemiology

Faculty Job IIb "90/10" NIH+Hospital Immerse in Gen Epi, Genomics & Programs

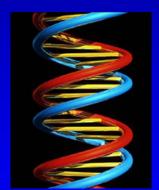
Contagious passion for epi & outcomes research

"What am I good at \rightarrow move on \rightarrow enjoy and succeed"

Focus on research, play focussed clinical role

Be rigorous, publish, focus on genetics and imaging

Join a collaborative genomic


Lead novel genomic programs at Framingham & NHLBI

Progression from Risk Factors to Clinical Cardiovascular Disease

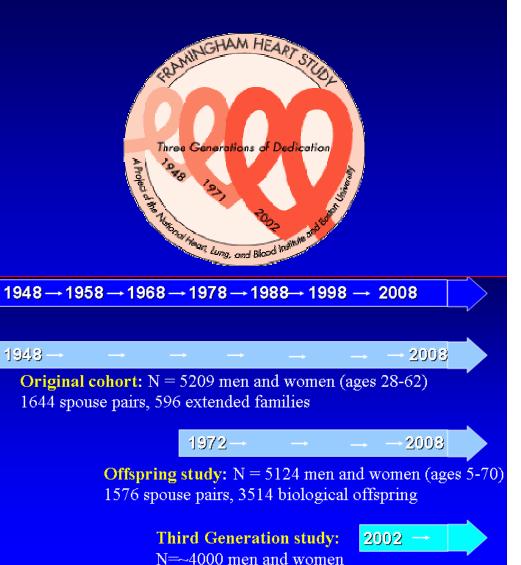
Major Traditional Risk Factors: SBP, DBP, Cholesterol, LDL, HDL, Diabetes Mellitus BioMarkers: Inflammation, Met. Syndrome, Thrombosis

Environmental

Genetic

Subclinical Disease of Ventricle, Conduction System and Arteries

Determinants 🗕


Modification

Clinical Cardiovascular Disease: Heart Failure, Arrhythmia, Myocardial Infarction, and Stroke

Framingham Heart Study

Downtown Framingham, MA (circa 1960)

Premature CVD in Parents* Leads to Increased Relative Risk of CVD

	Positive Parental History of Premature CVD					
Model Adjustment	None	Both	≥1 Parent			
Men						
Age-adjusted	1.0	3.1	2.6			
Multivariable-adjusted*	1.0	2.4	2.0			
Women						
Age-adjusted	1.0	4.1	2.3			
Multivariable-adjusted*	1.0	2.8	1.7			

*Lloyd-Jones et al. JAMA 2004;291:2204. Adj. for age, total/HDL, SBP, anti-HTN Rx, AODM, BMI, current smoking.

Heritability of CVD Risk Factors &						
Subclinical Disease: Fram	ingham Study					
Variable	Heritability					
Risk Factors*						
Fasting Glucose Systolic Blood Pressure Maximum BMI	32% 42% 40%					
CRP PAI-1 Antigen Platelet Aggregation (Epi)	26% 26% 48%					
Subclinical LV & Conduction LV Hypertrophy QT Duration	<u>n Disease**</u> 26% 35%					
Subclinical Vascular Dis Wall Thickness, Carotid Arte Calcium, Aorta or Coronarie *L. A. Cupples, ASHG 1996. *E. Benjamin, AHA 2000. *C Fox, S	ry† 38% s [‡] 38%					

^{*}P Peyser, Circulation 2002, ^{††}C O'Donnell, Circulation 2002, Newton-Cheh, Heart Rhythm 2005.

2000-05: Genome-Wide Linkage for CHD/MI

Source	Phenotype	N of families	Locus
Pajukanta, AJHG 2000	Premature CHD	156 Finnish	2q21, X
Francke, Hu M Gen 2001	CHD or AODM	99 Indian	16p13
Broeckel, Nat Gen 2002	Premature MI	513 German	14q32
Harrap, ATVB 2002	ACS	63 Austral. (sibpairs)	2q36
Wang, AJHG 2004	Premature CHD	428 Caucasian US	1p34-36
Helgadottir, Nat Gen 2004	MI	296 ext. Icelandic	13q12-13
Hauser, AJHG 2004	Premature CHD	438 US	3q13
Samani, AJHG 2005	Premature CHD, MI	1,933 (sibpairs)	Chr 2
Farrall, Plos Gen 2006	Premature MI or ACS	2026 (sibpairs)	Chr 3, 11, 17
Bowden, Diabetes 2006	CVD in AODM	358 Caucasian	Chr 3, 4, 14

Meta-analysis (Chiodini and Lewis. ATVB 2003) of first four studies above showed overlap for 3q26-27. CHD=coronary heart disease, MI=myocardial infarction, AODM=Adult onset diabetes, ACS=Acute coronary syndrome.

1990's: <u>Single</u> Candidate Gene Variants Studied for Coronary Heart Disease

Gene	Variant	Relative Risk	N of Studies	N of Cases / Controls
Apo E	ε4/ε4	1.42	48	15,492 / 32,965
MTHFR	C677T	1.21	72	12,193 / 11,945
ACE	D/I	1.21	19	2,848 / 10,256
Apolipo B	Ins/Del	1.19	22	6,007 / 5,609
PAI-1	4G/5G	1.20	10	1,515 / 1,866
Fibrinogen B	G-455A	0.68	4	745 / 816
ENOS	Intron-4	1.34	16	6,212 / 6,737

Adapted from Ginsburg G et al. JACC 200546:1615.

The Human Genome and Hapmap

Projects

Nature October 21 2004;431:931.

articles

Finishing the euchromatic sequence of the human genome

International Human Genome Sequencing Consortium

* A list of authors and their affiliations appears in the Supplementary Information

The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ~99% of the euchromatic genome and is accurate to an error rate of ~1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human genome sequence sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.

"2.85 billion nucleotides ...encode only 20,000-25,000 protein-coding genes" & all genomic data freely available on the web

Science October 27 2005;431:931

nature

ARTICLES

The genome consists of ~ 1 SNP per 1000 bp and "a block-like structure of linkage disequilibrium...leading to substantial correlations of SNPs with...their neighbours"

A haplotype map of the human genome

The International HapMap Consortium*

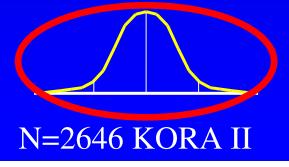
Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a public database of common variation in the human genome: more than one million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution.

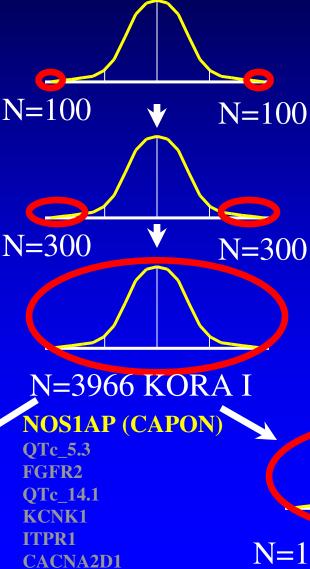
2006: Genome-Wide Association Studies (GWAS) of 100K-1,000K SNPs

With completion of the human genome sequence & "HapMap":

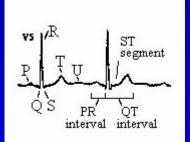
- High throughput genotyping at acceptable cost
- Several companies now selling genome-wide screening CHIPs of 250,000-1,000,000 SNPs
- Technology has outpaced the conduct of research
- Critical issues now are control for multiple testing, large sample sizes (1000's of subjects), replication using multiple independent studies, nailing the functional significance of novel gene discoveries

GWAS (Case-Control) Studies to Date


<u>Cancer</u>		Lung		<u>Eye</u>		
Prostate CancerALLBreast Cancer		•Asthma		Macular DegenerationGlaucoma (XFG)		
•Colon Cancer <u>Cardiovascular</u>		<u>Rheumatic Diseases</u>			<u>Infectious Disease</u>	
and Risk Facto	•Celia	•SLE (Lupus) •Celiac Disease			•HIV Host Control	
•Obesity •Hypertension		Rheumatoid ArthritisCrohn's Disease		Neurology and Psychiatry		
Diabetes, TypeDiabetes, Type	2 Bo	Bone			Disorder s Leg Syndrome	
 ECG QT interv MI, CAD Atrial Fibrillation 	•Os	•Osteoarthritis		Multiple SclerosisALS		


GWA Study (100K): *NOS1* Regulator Gene *CAPON* Variant and Cardiac Repolarization

Stage I: ~100K GWAS, Women Only KORA I


Stage II: Top 10 SNPs, Women Only KORA I

Stage III: Top 7 SNPs, Men & Women KORA I

Phenotype: Age-, sex- and RR-adjusted QT interval

Reference: Arking DE et al. Nature Genetics 2006; epub

N=1805 Fram. Heart Study

Diabetes Mellitus GWAS 2007

Report

Replication of Genome-Wide Association Signals in U.K. Samples Reveals Risk Loci for Type 2 Diabetes

Eleftheria Zeggini,^{1,2*} Michael N. Weedon,^{3,4*} Cecilia M. Lindgren,^{1,2*} Timothy M. Frayling,^{3,4*} Katherine S. Elliott² Hana Lango^{3,4} Nicholas L. Timpson^{2,5} John P. B. Perry^{3,4} Nigel W. Payner^{1,2}

Rachel A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Christop Susceptibility Variants

Lon R. O

The We Laura J. Scott,¹ Karen L. Mohlke,² Lori L. Bonnycastle,³ Cristen J. Willer,¹ Yun Li,¹ William L. Duren,¹ Michael R. Erdos,³ Heather M. Stringham,¹ Peter S. Chines,³ Anne U. Jackson,¹ Ludmila Prokunina-Olsson,³ Chia-Jen Ding,¹ Amy J. Swift,³ Narisu Narisu,³ Tianle Hu,¹ Randall Pruim,⁴ Rui Xiao,¹ Xiao-Yi Li,¹ Karen N. Conneely,¹ Nancy L. Riebow,³ Andrew G. Sprau,³ Maurine Tong,³ Peggy P. White,¹ Kurt N. Hetrick,⁵ Michael W. Barnhart,⁵ Craig W. Bark,⁵ Janet L. Goldstein,⁵ Lee Watkins,⁵ Fang Xiang,¹ Jouko

Sarami Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and R. Abe **Triglyceride Levels** Franci

Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes for BioMedical Research*[†]

Top 10 Results Combined Analysis Of Stages 1 + 2, Three Studies (14602 cases + 17968 controls)

	F	USION		DGI	WTCCC/UKT2D		All Samples	
Gene	OR	p-value	OR	p-value	OR	p-value	OR	p-value
TCF7L2	1.34	1.3 x 10 ⁻⁸	1.38	2.3 x 10 ⁻³¹	1.37	6.7 x 10 ⁻¹³	1.37	1.0 x 10 ⁻⁴⁸
IGF2BP2	1.18	2.1 x 10 ⁻⁴	1.17	1.7 x 10 ⁻⁹	1.11	1.6 x 10 -4	1.14	8.9 x 10 ⁻¹⁶
CDKN2A/B	1.20	.0022	1.20	5.4 x 10 ⁻⁸	1.19	4.9 x 10 ⁻⁷	1.20	7.8 x 10 ⁻¹⁵
FTO	1.11	0.016	1.03	0.25	1.23	7.3 x 10 ⁻¹⁴	1.17	1.3 x 10 ⁻¹²
CDKAL1	1.12	0.0095	1.08	0.0024	1.16	1.3 x 10⁻⁸	1.12	4.1 x 10 ⁻¹¹
KCNJ11	1.11	0.013	1.15	1.0 x 10 -7	1.15	0.0013	1.14	6.7 x 10 ⁻¹¹
HHEX	1.10	0.026	1.14	1.7 x 10⁻⁴	1.13	4.6 x 10 ⁻⁶	1.13	5.7 x 10 ⁻¹⁰
SLC30A8	1.18	7.0 x 10 ⁻⁵	1.07	0.047	1.12	7.0 x 10 ⁻⁵	1.12	5.3 x 10 ⁻⁸
Chr 11	1.48	5.7 x 10 ⁻⁸	1.16	0.12	1.13	0.068	1.23	4.3 x 10 ⁻⁷
PPARG	1.20	0.0014	1.09	0.019	1.23	0.0013	1.14	1.7 x 10 ⁻⁶

Common Allele on Chr 9p21 Associated with Coronary Heart Disease 2007 **Sciencexpress**

Report

A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction

Anna Helgadottir.¹* Gudmar Thorleifsson.¹* Andrei Manolescu.¹* Solveig Gretarsdottir.¹ Thorarinn Blondal,¹ Aslaug Jonasdottir,¹ Adalbjorg Jonasdottir,¹ Asgeir Sigurdsson,¹ Adam Baker,¹ Arnar Palsson,¹ Gisli Masson,¹ Daniel Gudbjartsson,¹ Kristinn P. Magnusson,¹ Karl Andersen,² Allan I. Levey,³ Valgerdur M. Backman,¹ Sigurborg Matthiasdottir,¹ Thorbjorg Jonsdottir,¹ Stefan Palsson,¹ Helga Einarsdottir,¹ Steinunn Gunnarsdottir,¹ Arnaldur Gylfason,¹ Viola Vaccarino,³ W. Craig Hooper,³ Muredach P. Reilly,⁴ Christopher B. Granger,⁵ Ha

Gulcher,¹ Gudmundur Thor, A Common Allele on Chromosome 9 Associated with Coronary Heart

¹deCODE genetics Inc, Reykjavil Ruth McPherson, ¹*† Alexander Pertsemlidis, ²* Nihan Kavaslar, ¹ Alexandre Stewart, ¹ Robert Roberts, ¹ Medicine, Atlanta, GA 30322, U Hinds, ³ Len A. Pennacchio, ⁴ Anne Tybjaerg-Hansen, ⁵ Aaron R. Folsom, ⁶ Eric Boerwinkle, ⁷ Helen H. H University School of Medicine, I Cohen^{2,8}†

¹Division of Cardiology, University of Ottawa Heart Institute, Ottawa K1Y4W7, Canada. ²Donald W. F *These authors contributed equal Clinical Research Center and the Eugene McDermott Center for Human Growth and Development, Uni [†]To whom correspondence shoul Southwestern Medical Center, Dallas, TX 75390, USA. ³Perlegen Sciences, Mountain View, CA 94043 Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA & U.S. Department of E The global endemic of cardiov Institute, Walnut Creek, CA 94598, USA. 5 Department of Clinical Biochemistry, Rigshospitalet, Copen improved risk assessment and Hospital, Copenhagen DK-2100, Denmark, ⁶Division of Epidemiology and Community Health, Univer describe an association betwee Minneapolis, MN 55454, USA, 'Human Genetics Center and Institute for Molecular Medicine, Univers (MI) and a common sequence Science Center, Houston, TX 77030, USA, ⁸Center for Human Nutrition and the ⁹Howard Hughes Medi 9p21. This study included a tot University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. controls. The identified varian

*These authors contributed equally to this work. suppressor genes CDKN2A and

to the disease with high signific To whom correspondence should be addressed. E-mail: jonathan.cohen@utsouthwestern.edu or rmcph Approximately 21% of individ

Coronary heart disease (CHD) is a major cause of death homozygous for this variant an 1.64-fold greater risk of sufferin in Western countries. Here we used genome-wide than non-carriers. The corresp. association scanning to identify a 58 kilobase interval on chromosome 9p21 that was consistently associated with early onset cases. The population CHD in six independent samples (n > 23,000 participants) is 21% for MI in general and 3 from four Caucasian populations. This interval, which is

located near the CDKN2A and CDKN2B genes, contains no annotated genes and is not associated with established CHD risk factors such as plasma lipoproteins, hypertension or diabetes. Homozygotes for the risk allele comprise 20-25% of Caucasians and have a ~30-40% increased risk of CHD.

Weinberg equilibrium (P<0.001) or a control criteria (3) and 17,500 were a allele frequency <1%) in the sample. SNPs were entered into the analysis : associated with CHD at a nominal si 0.025 (table S2). These 2,586 SNPs independent sample of 311 cases and Ottawa (OHS-2) using the same crite Of these, 50 were associated with CH significance threshold of 0.025, with effect (Table S2)

The NEW ENGLAND JOURNAL of MEDICINE

Genomewide Association Analysis of Coronary Artery Disease

Nilesh J. Samani, F.M.ed. Sci., Jeanette Erdmann, Ph.D., Alistair S. Hall, F.R.C.P., Christian Hengstenberg, M.D., Massimo Mangino, Ph.D., Bjoern Mayer, M.D., Richard J. Dixon, Ph.D., Thornas Meitinger, M.D., Peter Braund, M.Sc., H.-Erich Wichmann, M.D., Jennifer H. Barrett, Ph.D., Inke R. König, Ph.D., Suzanne E. Stevens, M.Sc., Silke Szymczak, M.Sc., David-Alexandre Tregouet, Ph.D., Mark M. Iles, Ph.D., Friedrich Pahlke, M.Sc., Helen Pollard, M.Sc., Wolfgang Lieb, M.D.,

Francois Cambien, M.D., Marcus Fischer, M.D., Willem Ouwehand, F.R.C.Path., Stefan Blankenberg, M.D.,

Anthony J. Balmforth, Ph.D., Andrea Baessler, M.D., Stephen G. Ball, F.R.C.P., Tim M. Strom, M.D., Ingrid Brænne, M.Sc., Christian Gieger, Ph.D., Panos Deloukas, Ph.D., Martin D. Tobin, M.F.P.H.M., Andreas Ziegler, Ph.D., John R. Thompson, Ph.D., and Heribert Schunkert, M.D., for the WTCCC and the Cardiogenics Consortium*

ABSTRACT

RACKGROUND

Modern genotyping platforms permit a systematic search for inherited components From the University of Leicenter, Leicente (N.J.S., M.M., R.J.D., P.B., S.E.S., H.P., of complex diseases. We performed a joint analysis of two genomewide association studies of coronary artery disease.

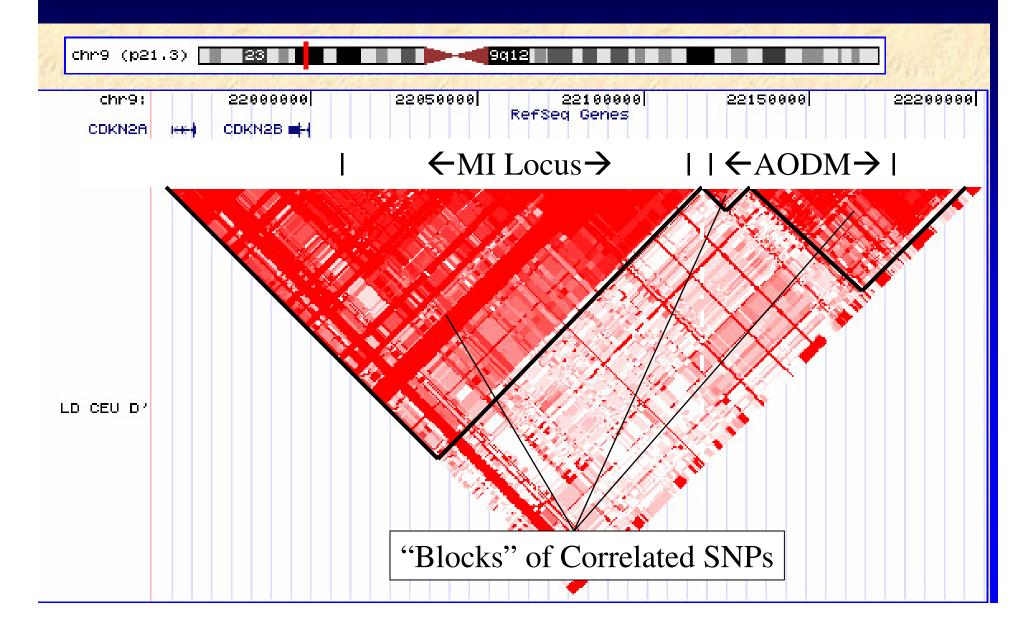
METHODS

We first identified chromosomal loci that were strongly associated with coronary artery disease in the Wellcome Trust Case Control Consortium (WTCCC) study (which involved 1926 case subjects with coron ary artery disease and 2938 controls) and looked for replication in the German MI (Myocardial Infarction) Family Study (which involved 875 case subjects with myocardial infarction and 1644 controls). Data on other singlenucleotide polymorphisms (SNPs) that were significantly associated with coronary artery disease in either study (P<0.001) were then combined to identify additional loci with a high probability of true association. Genoryping in both studies was performed with the use of the GeneChip Human Mapping 500K Array Set (Affymetrix).

RESULTS

Of thousands of chromosomal loci studied, the same locus had the strongest association with coronary artery disease in both the WTCCC and the German studies: chromosome 9p21.3 (SNP, rs1333049) (P=1.80×10⁻³⁴ and P=3.40×10⁻⁶, respectively). Overall, the WTOCC study revealed nine loci that were strongly associated with coronary artery disease (P<1.2×10-5 and less than a 50% chance of being falsely positive). In addition to chromosome 9p21.3, two of these loci were successfully replicated (adjusted P<0.05) in the German study: chromosome 6q25.1 (rs6922269) and chromosome 2(36.3 (rs2943634). The combined analysis of the two studies identified four additional loci significantly associated with coronary artery disease (P<1.3×10-6) and a high probability (>80%) of a true association: chromosomes 1p13.3 (rs599839), 1q41 (rs17465637), 10q11.21 (rs501120), and 15q22.33 (rs17228212).

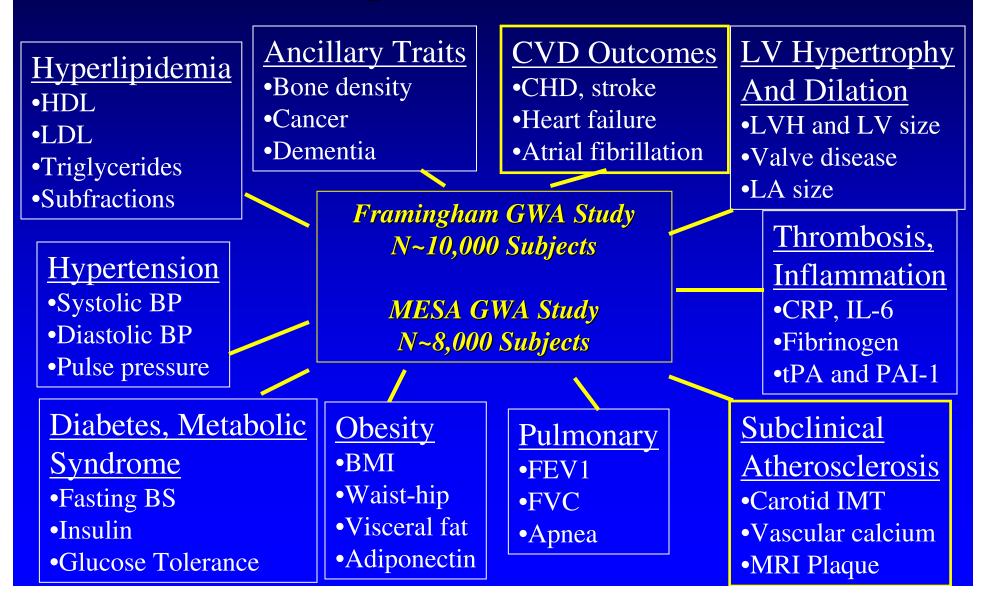
CONCLUSIONS


We identified several genetic loci that, individually and in aggregate, substantially affect the risk of development of coronary artery disease.

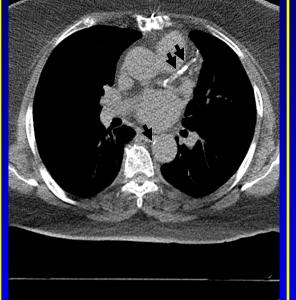
M.D.T., J.R.T.); University of Leeds, Leeds (A.S.H., J.H.B., M.M.I., A.J.B., S.G.B.); University of Cambridge and National Health Service Blood and Transplant, Cambridge (W.O.); and the Wellcome Trust Sanger Institute, Hirston (P.D.) - all in the United Kingdom; Universität zu Lü-beck, Lübeck (J. E., B.M., I.R.K., S.S., F.P., W.L., I.B., A.Z., H.S.); Universität Reports burg, Regenaturg (C.H., M.F. A.B.); GSF-Nationales Forechungszentrum für Umwelt und Gezundheit, Neuherberg (T.M. H.-E.W., T.M.S., C.G.); Technische Universitat München, Munich (T.M.); Ludwig Maximilians University, Munich (H. EW. C.G.); and Johannes Gutanberg University Mainz, Mainz (S.B.) — all in Germany; and INSERM, UMR SS25, University Preme et Marie Curie, Paris (D.A.T., F.C.). Address reprint requests to Dr. Samani at the Department of Cardiovascular Sciences University of Leicester, Glenfield Hospital Leicester LE3 9QP, United Kingdom, or at nja@le.ac.uk or to Dr. Schunkert at Medizinische Klinik II, Universität zu Lübeck, 23538 Lübeck, Germany, or at heribert. schunkert@innere2.uni-luebeck.de.

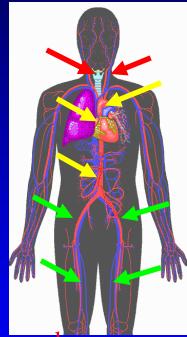
* Members of the Wellcome Trust Case Control Consortium (WTCCC) and the Cardiogenics Consortium are listed in the Supplementary Appendix, available with the full text of this article at www.nejm.org. This article (10.1056/NEJM os072366) was published at www.nejm.org on July 18, 2007

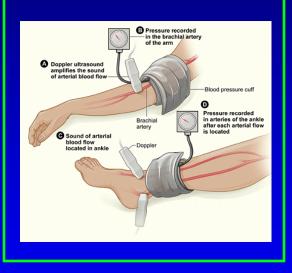
N Engl J Med 2007;357. Copyright @ 2007 Manachurdth Medical Society


Chomosome 9p21Locus for MI & AODM

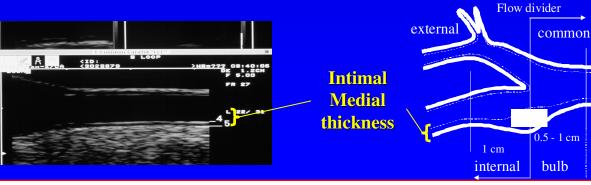
GWAS Example: Framingham Heart Study SNP Health Association Resource (SHARe)


- All consenting subjects from 3 generations—up to N~10,000 Caucasians
- 550,000 SNPs (Affymetrix) in each subject
- Include >>1,000 available risk factor, subclinical and clinical cardiovascular disease 'phenotypes'
 - Original Cohort, Offspring, Third Generation
 - All available examinations going back >50 years
- Comprehensive, web-based database by NCBI, to be shared widely with investigators
- Informatics: 5.5 billion genotypes, >5.5 trillion association tests


SHARe WGA Study in Framingham and Other NHLBI Population-Based Cohorts


CT and US Imaging for Coronary, Aortic, Carotid and Peripheral Atherosclerosis

Coronary, Aorta by MDCT



Peripheral Arteries by ABI

1 cm

Carotid Arteries by Ultrasound

NIH GWAS Policy August 2007

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Policy for Sharing of Data Obtained in NIH Supported or Conducted Genome-Wide Association Studies (GWAS)

AGENCY: National Institutes of Health. HHS.

ACTION: Notice.

Background

The NIH is interested in advancing genome-wide association studies (GWAS) to identify common genetic factors that influence health and disease. For the purposes of this policy, a genome-wide association study is defined as any study of genetic variation across the entire human genome that is designed to identify genetic associations with observable traits (such as blood

Federal Register: Vol. 72, No. 166 Tuesday, August 28, 2007

Small Business (SBIR/STTR) Contract Opportunities

NIH-Wide Initiatives New Investigators Program Multiple Principal Investigators Genome-Wide Association

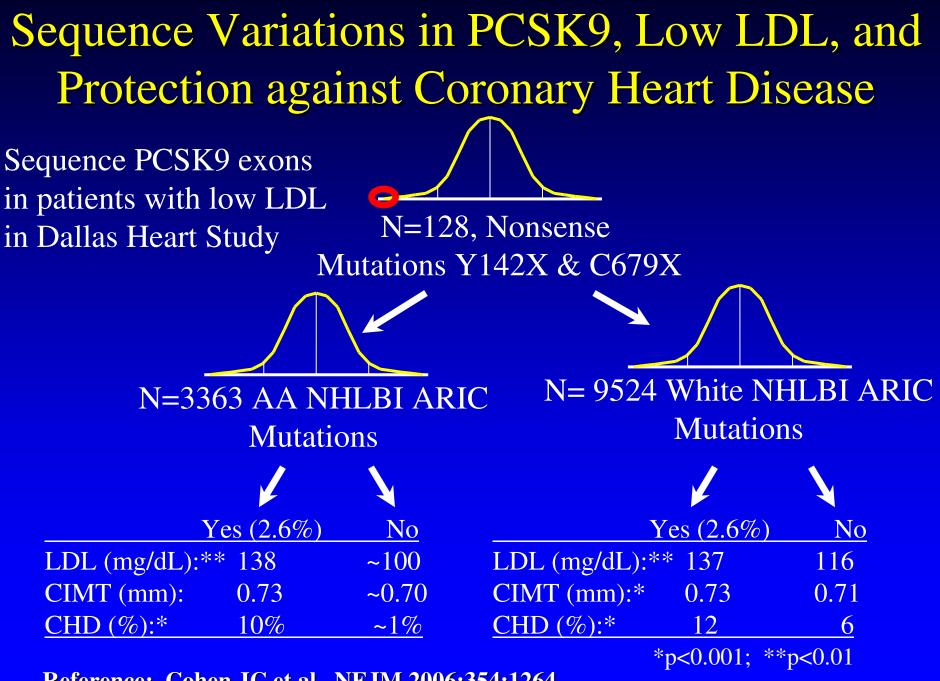
Studies (GWAS) NIH Roadmap for Medical Research NIH Blueprint for

Neuroscience Research

condition. Whole genome information, when combined with clinical and other phenotype data, offers the potential for increased understanding of basic biological processes affecting human health, improvement in the prediction of disease and patient care, and ultimately the realization of the promise of personalized medicine. In addition, rapid advances in understanding the patterns of human genetic variation and maturing high-throughput, cost-effective methods for genotyping are providing powerful research tools for identifying genetic variants that contribute to health and disease. The purpose of this Website is to support the implementation of the GWAS Policy.

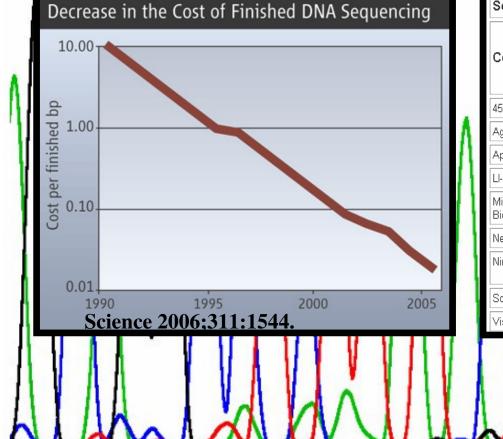
The NIH will continue to release additional guidance information on this site. Please e-mail GWAS@mail.nih.gov with any questions.

Policy Guidance


<u>Governance Structure</u> (PowerPoint - 37 KB) №₩

NIH GWAS Policy

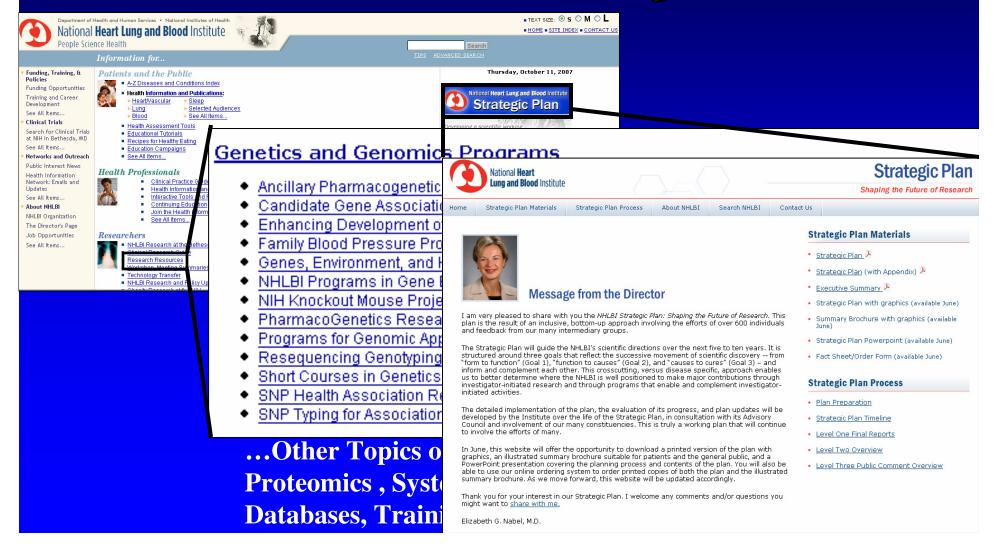
NIH OER Website: http://grants.nih.gov/grants/gwas/index.htm

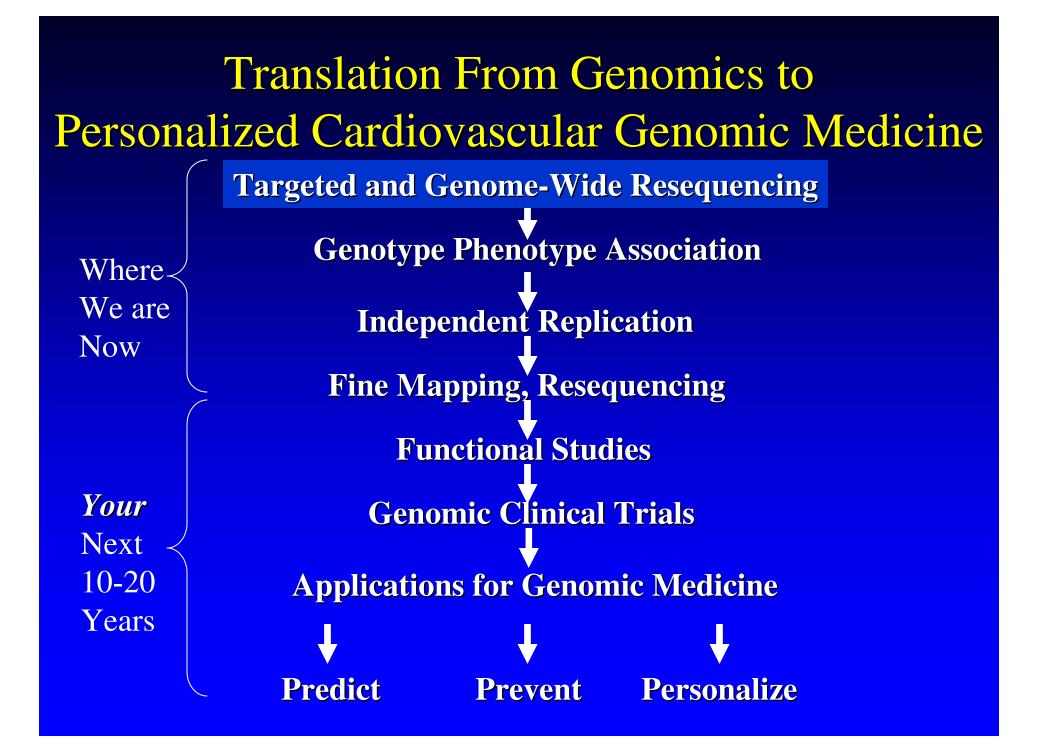

NHLBI Genome Wide Association Studies (GWAS): Driving Principle

The greatest public benefit will be realized if data from GWAS are made available, under terms and conditions consistent with the informed consent provided by individual participants, in a timely manner to the largest possible number of investigators.

Reference: Cohen JC et al. NEJM 2006;354:1264.

Decline in DNA Sequencing Costs Towards the "\$1000 Genpme"




Company	Format	Read Length (bases)	Expected Throughput Mb (million bases)/day	
454 Life Sciences	Parallel bead array	100	96	
Agencourt Bioscience	Sequencing by ligation	50	200	
Applied Biosystems	Capillary electrophoresis	1000	3-4	
LI-COR Biosciences	Electronic microchip	20,000	14,000	
Microchip Biotechnologies	Parallel bead array	850-1000	7	
Network Biosystems	Biochip	800+	5	
NimbleGen Systems	Map and survey microarray	30	100	
Solexa	Parallel microchip	35	500	
VisiGen Biotechnologies	Single-molecule array	NA	1000	

NHLBI-Supported Portfolio of Largescale Genetic Association Studies

- SNP Health Association Resource (SHARe)
 - Framingham Heart Study
 - Other SHARe Cohorts (Pending)
- Genome-Wide Association: SNP Genotyping and Analysis (STAMPEED)
- Enhancing Development of Genome-Wide Association Methods (ENDGAMe)
- Candidate Gene Association Resource (CARe)
- Women's Health Genome Study (WHGS)
- Women's Health Initiative (WHI) GWA Study

Finding Genomic Resources on the NHLBI Web Page

"Traditional Bench Laboratory" Research versus Genomics and Proteomics

	Traditional Lab	"Omics"
PI/Mentor	Single PI	May be multiple key PIs
		Collaboration Required
Approach	Highly developed, specific to lab/PI	Rapidly evolving technology/platform(s)
Methods	Single method(s)	Multidisciplinary
Research Questions	Hypothesis based approach	Unbiased approaches for discovery
Analysis	Simple statistics	Bioinformatics or advanced statistics

A Few Genomics Mentoring Examples

S. K. CAD/Lipid Genomics

S. S. Chemical Genomics

C. N-C. Arrhythmia Genomics

Fram Heart Study, MGH&Broad Institute

K23, Glaxo SK Grants Plus NIH LRP

MGH Preventive Cards MGH CVRC/Genetics +Broad Institute & FHS Harvard Dept. of Chem&Chem Biology

K08, Other Grants

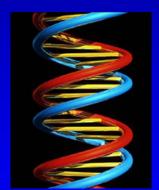
MGH General Cards MGH CVRC +Broad Inst Broad Institute and Fram Heart Study

K23, Other Grants Plus NIH LRP

MGH Heart Failure MGH CVRC/Genetics +Broad Institute & FHS

Genomics and Proteomics Training: Some Considerations

- Major versus Minor
- Basic Science vs Clinical Research
 - If basic science focus: animal models versus cell/tissue
 - Mendelian versus common complex disease
 - Family studies versus populations (GWAS requires LARGE populations)
- Focus on an Area of Specialization
 - Specific area: genomics, proteomics/metabolomics
 - Bioinformatics/statistical genetics
 - Genetic epidemiology
- Focus on Area of Translational Medicine:
 - Discovery of Disease Mechanisms
 - Clinical Trials
 - Prediction/Prognosis
 - Pharmacogenetics
 - Clinical Genetics
 - Outcomes/Clinical Effectiveness/Cost-Effectiveness Research


Genomics and Proteomics Training: Additional Random Considerations

- Supplemental Coursework:
 - Genetic, genomics, statistical genetics
 - Epidemiology, statistics and clinical research
 - Bio-informatics
 - NHLBI programs, Gordon Conferences, CSH Symposium
- Joint position/Co-mentor
 - Local genome institute
 - Local basic science institute
 - School of Public Health
- Consider fellowship and career opportunities at NIH
- Essential that your specific project lead to specific, high quality first author manuscript(s)

Progression from Risk Factors to Clinical Cardiovascular Disease

Major Traditional Risk Factors: SBP, DBP, Cholesterol, LDL, HDL, Diabetes Mellitus BioMarkers: Inflammation, Met. Syndrome, Thrombosis

Environmental

Genetic

Subclinical Disease of Ventricle, Conduction System and Arteries

Determinants 🗕

Modification

Clinical Cardiovascular Disease: Heart Failure, Arrhythmia, Myocardial Infarction, and Stroke

Premature CVD in Parents* or Siblings** Leads to Increased Relative Risk of CVD

	Positive Parental History of Premature CVD					
Model Adjustment	None	Both	≥1 Parent			
Men						
Age-adjusted	1.0	3.1	2.6			
Multivariable-adjusted*	1.0	2.4	2.0			
Women						
Age-adjusted	1.0	4.1	2.3			
Multivariable-adjusted*	1.0	2.8	1.7			

*Lloyd-Jones et al. JAMA 2004;291:2204. Adj. for age, total/HDL, SBP, anti-HTN Rx, AODM, BMI, current smoking.

 In further multivariable-adjusted** model adjusting for BOTH Sibling CVD and Parental CVD: Rel. Risk = 2.0 for Sibling CVD versus Rel. Risk = 1.5 for Parental CVD

**Murabito et al. JAMA 2006;294:3117-3123. Adj. for age, total/HDL, SBP, anti-HTN Rx, AODM, BMI, current smoking.

Heritability of CVD Risk Factors &						
Subclinical Disease: Fram	ingham Study					
Variable	Heritability					
Risk Factors*						
Fasting Glucose Systolic Blood Pressure Maximum BMI	32% 42% 40%					
CRP PAI-1 Antigen Platelet Aggregation (Epi)	26% 26% 48%					
Subclinical LV & Conduction LV Hypertrophy QT Duration	<u>n Disease**</u> 26% 35%					
Subclinical Vascular Dis Wall Thickness, Carotid Arte Calcium, Aorta or Coronarie *L. A. Cupples, ASHG 1996. *E. Benjamin, AHA 2000. *C Fox, S	ry† 38% s [‡] 38%					

^{*}P Peyser, Circulation 2002, ^{††}C O'Donnell, Circulation 2002, Newton-Cheh, Heart Rhythm 2005.

Translation From GWA Studies to Personalized Genomic Medicine Genome-Wide Association **Genotype Phenotype Association Independent Replication** Fine Mapping, Resequencing **Functional Studies Genomic Clinical Trials Applications for Genomic Medicine Personalize Predict** Prevent

GWAS (Case-Control) Studies to Date

<u>C</u>	<u>ancer</u>		<u>Lung</u>		<u>Eye</u>		
Prostate CancerALLBreast Cancer			•Asthma		Macular DegenerationGlaucoma (XFG)		
	Colon Cancer	Rheur	natic Diseas	<u>'es</u>	Infectious Disease		
	Cardiovascular and Risk Fact	ors •SLE	 SLE (Lupus) Celiac Disease Rheumatoid Arthritis Crohn's Disease 		•HIV Host Control		
	ObesityHypertension				<u>Neurology and Psychiatry</u>		
	Diabetes, TypeDiabetes, Type	e 2 Bo			Bipolar DisorderRestless Leg Syndrome		
	ECG QT interMI, CADAtrial Fibrillat	•Os	steoarthritis		Multiple SclerosisALS		

NIH GWAS Policy August 2007

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Policy for Sharing of Data Obtained in NIH Supported or Conducted Genome-Wide Association Studies (GWAS)

AGENCY: National Institutes of Health. HHS.

ACTION: Notice.

Background

The NIH is interested in advancing genome-wide association studies (GWAS) to identify common genetic factors that influence health and disease. For the purposes of this policy, a genome-wide association study is defined as any study of genetic variation across the entire human genome that is designed to identify genetic associations with observable traits (such as blood

Federal Register: Vol. 72, No. 166 Tuesday, August 28, 2007

Small Business (SBIR/STTR) Contract Opportunities

NIH-Wide Initiatives New Investigators Program Multiple Principal Investigators Genome-Wide Association

Studies (GWAS) NIH Roadmap for Medical Research NIH Blueprint for

Neuroscience Research

condition. Whole genome information, when combined with clinical and other phenotype data, offers the potential for increased understanding of basic biological processes affecting human health, improvement in the prediction of disease and patient care, and ultimately the realization of the promise of personalized medicine. In addition, rapid advances in understanding the patterns of human genetic variation and maturing high-throughput, cost-effective methods for genotyping are providing powerful research tools for identifying genetic variants that contribute to health and disease. The purpose of this Website is to support the implementation of the GWAS Policy.

The NIH will continue to release additional guidance information on this site. Please e-mail GWAS@mail.nih.gov with any questions.

Policy Guidance

<u>Governance Structure</u> (PowerPoint - 37 KB) №₩

NIH GWAS Policy

NIH OER Website: http://grants.nih.gov/grants/gwas/index.htm

My NCBI

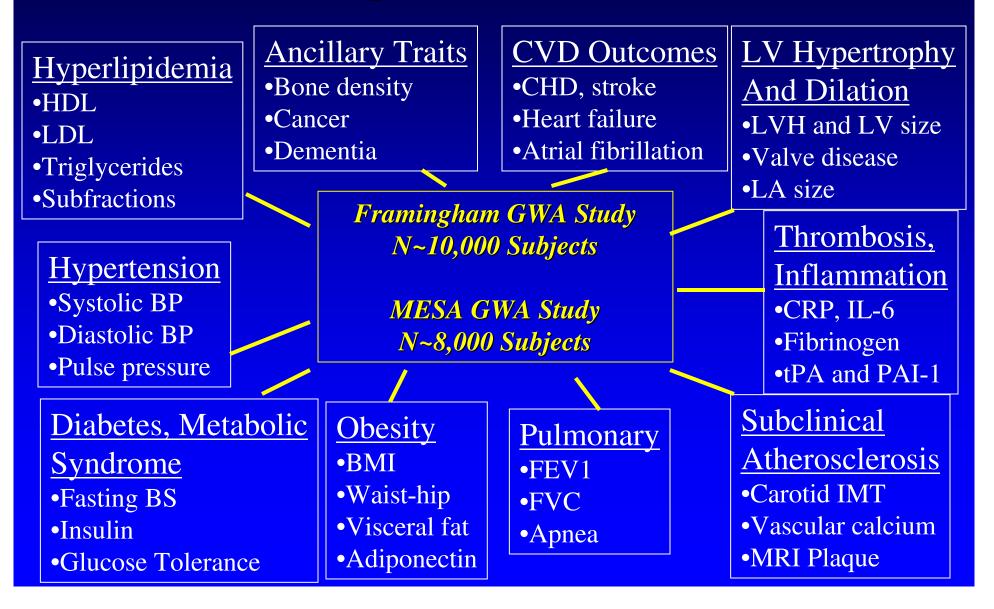
[Sign In] [Register]

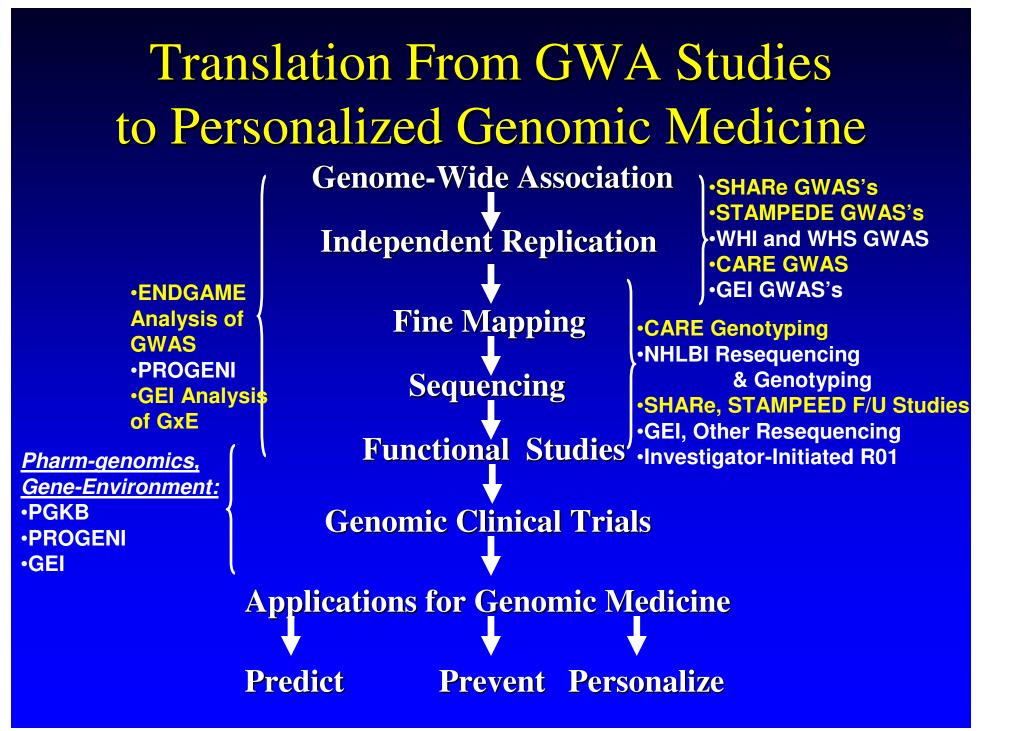
?

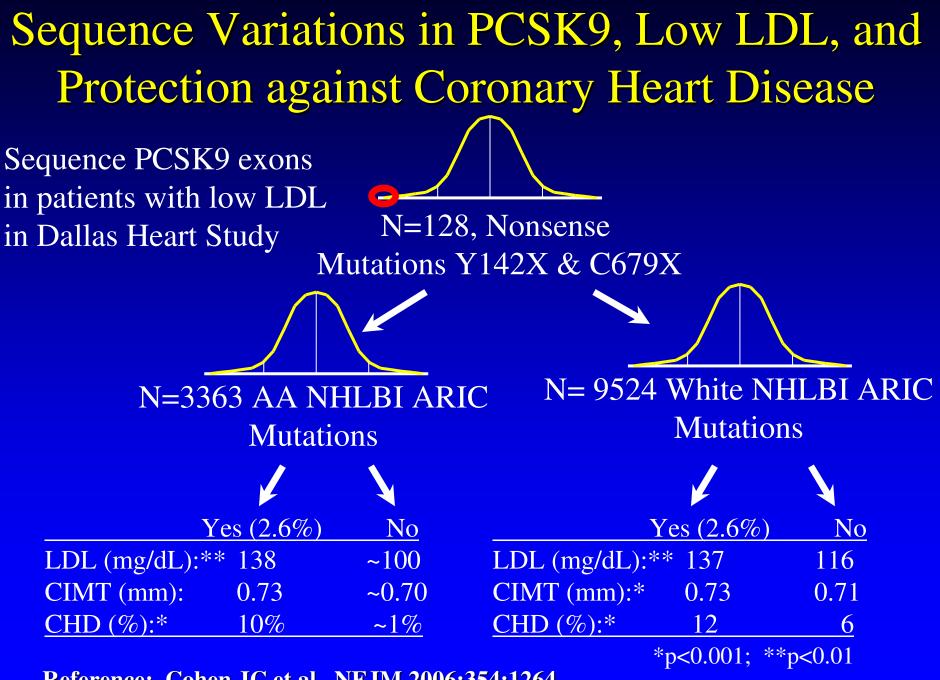
Search dbGaP

All Data

		GENOTYPE and PHENOTYPE						
tabases	PubMed	Nucleotide	Protein	Genome	Structure	OMIM	PMC Jour	nals Books
>	💌 for		Go	Clear				
	Limits Preview/Index	History Clipboard	Details					
	Browse dbGaP						TUTORIAL	ABOUT dbGAP
	By Studies By Disea	ases Advanced Sea	irch					
s		Study		💿 Sub-St	udies Variables	Documents	Participants	Type of Study


About dbGaP Browse dbGaP Authorized Access NEW Email Alerts dbGaP Tutorial Security Procedures FTP Download NEW GWAS Publications Contact dbGaP


Other Services


MeSH Browser Clinical Queries

Study 📀	Sub-Studies	Variables	Documents	Participants	Type of Study
Collaborative Association Study of Psoriasis	-	-	0-0	2000	Case-control
Genotyping the 270 HapMap samples for GAIN by Broad	-	-	-	270	Parent-offspring trio
Genotyping the 270 HapMap samples for GAIN by Perlegen		-	1.00	270	Parent-offspring trio
International Multi-Center ADHD Genetics Project	-	<u>438</u>	<u>12</u>	2835	Parent-offspring trio
LEAPS	2	-	121	886	Case-control
Linking Genome-Wide Association Study of Schizophrenia	-	-	-	2400	Case-control
🗎 Major Depression: Stage 1 Genomewide Association in Population-Based Samples	-	-	-	3786	Case-control
🖹 NEI Age-Related Eye Disease Study (AREDS)	-	<u>174</u>	<u>37</u>	600	Case-control
NINDS Control Study	-	<u>65</u>	2	1813	Control set
NINDS Parkinsonism Study	-	<u>40</u>	<u>4</u>	1498	Case-control
Bearch for Susceptibility Genes for Diabetic Nephropathy in Type 1 Diabetes	ā.	-	1.0	3046	Case-control
Whole Genome Association Study of Bipolar Disorder	-	-	-	-	Case-control

SHARe WGA Study in Framingham and Other NHLBI Population-Based Cohorts

Reference: Cohen JC et al. NEJM 2006;354:1264.

Genome Wide Sequencing (GWS) Studies towards Personalized Genomic Medicine **Genome-Wide (Whole Genome or Targeted) Sequencing Genotype Phenotype Association Independent Replication** Fine Mapping, Resequencing **Functional Studies Genomic Clinical Trials Applications for Genomic Medicine Predict Personalize** Prevent