Top Ten Things to Know
Childhood and Adolescent Adversity and Cardiometabolic Outcomes

1. Childhood adversity is highly prevalent, with 59% of the U.S. population reporting at least one adverse event experience.

2. Substantial evidence links childhood adversity to cardiometabolic disease later in the life-course, including heart disease, type 2 diabetes mellitus, and stroke, which are three of the top ten causes of mortality in the U.S.

3. The goal of this AHA statement is to review the scientific literature regarding the influence of childhood and adolescent adversity on cardiometabolic health outcomes, including obesity, hypertension, type 2 diabetes mellitus and cardiovascular disease.

4. Evidence suggests that childhood adversity is associated with adverse health behaviors that increase risk of cardiometabolic disease, including smoking, overeating, and inactivity. In addition to behavioral factors, other unmeasured behaviors or biological processes likely are involved in the pathway from childhood adversity to adverse cardiometabolic outcomes.

5. Cardiometabolic health outcomes and adverse experiences are strongly patterned by sex, race/ethnicity, socioeconomic status, and nativity (place of birth).

6. Racial and ethnic minority children and children living in lower socioeconomic status households have a higher prevalence of child adversities and, in addition, they experience a higher prevalence of cardiometabolic health outcomes across the life-course.

7. Three pathways are commonly identified to explain how childhood adversity may increase risk of cardiometabolic (as well as other) diseases. These included behavioral, mental health, and biological.

8. As childhood adversities can impact cardiometabolic health and multiple health domains across the life-course, interventions that ameliorate upstream exposures may be more appropriate than remediating downstream CVD risk factor effects later in life.

9. Studies exploring how childhood adversity may interact with genetic vulnerability in producing cardiometabolic health outcomes are lacking. Epigenetic approaches in the future that examine how childhood adversity alters gene expression and whether such alterations influence cardiometabolic outcomes would be beneficial.

10. Future research, include defining exposure intensity, duration, and vulnerable periods during the life-course and across generations; characterizing resiliency against progression toward cardiometabolic consequences; identifying biological factors that modify response to adversity and elucidating pathobiological pathways linking adversity to cardiometabolic outcomes; and demonstrating which interventions on upstream childhood adversity exposure prevent progression to cardiometabolic disease, are needed to prevent or mitigate childhood adversity.