It’s All In The Tissue:
A Rare Case of Acute Cardiogenic Shock

Nikhil Narang MD
Advanced Heart Failure/Transplant Cardiology Fellow
University of Chicago

American Heart Association Council on Clinical Cardiology
Laennec Young Clinician Presentation
November 10th, 2018
Disclosures

N. Narang: No financial disclosures
N. Uriel: Grant Support – Abbott, Medtronic
V. Jeevanandam: Consultant – Abbott
History of Present Illness

• 53 y/o F with a h/o hypothyroidism presented to the emergency department with progressive dyspnea + abdominal discomfort for ~ 2 weeks

• Started after traveling to Southwest + Niagara Falls

• Symptoms included body aches, congestion, non-productive cough and subjective fevers
Medical History

Medical/Surgical History
• Insomnia
• Hypothyroidism

Allergies
• None

Family History
• HTN and Hypothyroidism in Mother

Social History
• Works as marketing manager
• Married with 3 children
• Non-smoker, social alcohol use

Medications:
• Levothyroxine 25 mcg
Physical Examination

Vitals: 36.2 87/69 mmHg HR 90 RR 22 96% on 3L

General: Mild distress, speaking full sentences

Cardiovascular: Regular rhythm, normal S1, 3/6 holosystolic murmur LLSB, +S3 gallop, no rub, JVP 14 cm with prominent V waves

Pulm: Bilateral inspiratory crackles b/l at both bases; diminished RLL breath sounds

Abd: Soft, non-tender, non-distended

Neuro: A and O x 3, no focal deficits

MSK: Cool hands/feet; 1+ pitting edema from mid-shin downwards
Total Protein: 6.1 g/dL
Albumin: 2.9 g/dL
T.Bili: 0.6 mg/dL
AST: 850 u/L
ALT: 960 u/L
Lactic Acid: 3.1 mmol/L

Creatine Kinase: 459 u/L
Creatine Kinase-MB: 35.9 u/L
Troponin-T: 3.1 ng/mL
C-Reactive Protein: 87 mg/L
TSH: 1.68 mCU/ml
Electrocardiogram
Case Synthesis

Decompensated Heart Failure

- Subacute Presentation
- ? Cardiogenic Shock
- Autoimmune Disease
- Low Voltage EKG
- Urgent RHC/LHC
Differential Diagnosis of HF

- Toxins
- Genetic
- Metabolic/Endocrine
- Infiltrative
- Stress CM
- Ischemic
- Pregnancy
- Hypertension
- HCM
- Non-Compaction
- ARVC
- Infectious
- Infiltrative
- Inflammatory
Differential Diagnosis

Acute Cardiomyopathy

- Ischemic
- Sepsis
- Inflammatory
- Metabolic
LHC/RHC

- No CAD on coronary angiography

 - RA 19 mmHg
 - RV 33/15 mmHg
 - PA 32/19/25 mmHg
 - PCWP 25 mmHg
 - LVEDP 23 mmHg
 - BP: 81/61/71 mmHg
 - PA saturation 47%
 - FA saturation 99%
 - Fick CO: 2.6 L/min
 - Fick CI: 1.5 L/min/m²
 - SVR: 1600 dyn·sec/cm⁵
 - PVR 0.8 WU
 - PCWP 25 mmHg
 - PVR 0.8 WU

Endomyocardial Biopsy Performed

IABP Placed
Clinical Course

- One-hour post cath, developed ventricular arrhythmias and progressive hypotension

- Biventricular Dysfunction (CVP/PCWP = 0.8)

- Ongoing hemodynamic compromise despite IABP

- CentriMag BiVAD Temporary Assist Device
Intraoperative TEE
Pathology

GIANT CELL MYOCARDITIS
Giant Cell Myocarditis

- Estimated incidence 22 cases/100,000

- Possible increased incidence among those with existing autoimmune diseases

- Differential includes sarcoidosis, eosinophilic myocarditis, infectious myocarditis, viral myocarditis

- Prognosis varies depending on fulminant versus non-fulminant variation
Patients with giant cell myocarditis have extremely ventricular compromise, or progress to dilated cardiomyopathy and logic evidence of myocardial inflammation. Failure to use beta-blocking outcome included New York Heart Association Class III or IV, pulmonary ejection fraction of less than 40%. Additional predictors of poor presentation with syncope, bundle branch block on electrocardiography, factors do appear to predict death or transplantation, including pre-predict adverse outcomes in viral myocarditis. Although many of documention transplant-free survival of 93% in 11 years. Those with nont myocarditis) have a surprisingly good prognosis, with one series patients with severe hemodynamic collapse at presentation (fulminating myocarditis may have a more varied outlook. Paradoxically, however, patients with more advanced cardiac dysfunction accompany myocarditis will recover in the majority of cases without long-term sequelae. Patients with acute myocarditis and mild cardiac involvement generally have a poor prognosis, with median survival of less than 6 months, and most patients will require transplantation to avoid succumbing to the disease. Poor prognosis, with median survival of less than 6 months, and most patients will require transplantation to avoid succumbing to the disease.
Immunosuppression in GCM

- Initiation of immunosuppression regimen (calcineurin inhibitors +/- azathioprine, steroids) are the mainstays of therapy; median survival improves with immunosuppression

- No robust RCT to guide therapy length or specific regimen; observational studies have demonstrated relapse upon cessation of immunosuppression

- Surveillance biopsies following recovery can guide titration of therapies

LT Cooper. *Am J Cardiol* 2008;102:1535–1539
Clinical Course

- Received pulsed dosed IV methylprednisone at time of BiVAD implant + steroid taper, followed by IVIG dosing and of Tacrolimus

- Remained on BiVAD support for 2 weeks with clinical

- Presence of arterial line pulsatility and aortic valve opening on adequate BiVAD support suggested possible recovery of native LV function
Reverse Ramp Study

3L Flow

1L Flow
<table>
<thead>
<tr>
<th>LVAD Speed (RPM)</th>
<th>RVAD Speed (RPM)</th>
<th>LVAD Flow (L/Min)</th>
<th>RVAD Flow (L/min)</th>
<th>RA (mmHg)</th>
<th>Fick CI (L/min/ m²)</th>
<th>LVEDD (cm)</th>
<th>Aortic Valve</th>
<th>LVEF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3200</td>
<td>3000</td>
<td>4.4</td>
<td>4.2</td>
<td>7</td>
<td>4.6</td>
<td>4</td>
<td>closed</td>
<td>25</td>
</tr>
<tr>
<td>3000</td>
<td>2800</td>
<td>4.1</td>
<td>4</td>
<td>7</td>
<td>4.6</td>
<td>4.1</td>
<td>open</td>
<td>30</td>
</tr>
<tr>
<td>2800</td>
<td>2600</td>
<td>3.6</td>
<td>3.2</td>
<td>7</td>
<td>4.2</td>
<td>4.2</td>
<td>open</td>
<td>30</td>
</tr>
<tr>
<td>2600</td>
<td>2400</td>
<td>3.2</td>
<td>3</td>
<td>8</td>
<td>4.2</td>
<td>4.2</td>
<td>open</td>
<td>35</td>
</tr>
<tr>
<td>2400</td>
<td>2200</td>
<td>2.7</td>
<td>2.4</td>
<td>8</td>
<td>3.5</td>
<td>4.3</td>
<td>open</td>
<td>40</td>
</tr>
<tr>
<td>2200</td>
<td>2000</td>
<td>2.3</td>
<td>2</td>
<td>9</td>
<td>3.4</td>
<td>4.4</td>
<td>open</td>
<td>45</td>
</tr>
<tr>
<td>2000</td>
<td>1800</td>
<td>1.5</td>
<td>1.3</td>
<td>9</td>
<td>3.4</td>
<td>4.5</td>
<td>open</td>
<td>45</td>
</tr>
</tbody>
</table>
Clinical Course

• Reverse RAMP study showed evidence of myocardial recovery

• Decanulated from BiVAD support, transitioned to Milrinone → weaned off

• Discharged ~ 3 weeks following initial presentation, plan ongoing immunosuppression (tacrolimus and prednisone) with surveillance

• Patient back to work and running 10K races!
Follow-Up Cardiac MRI
Summary

• Narrow pulse pressure, clinical volume overload, lactic acidosis may suggest critical cardiogenic shock irrespective of non-invasive/invasive diagnostics

• Consider endomyocardial biopsy in a unexplained, acute and progressive cardiomyopathy

• Giant cell myocarditis often progresses to a fulminant course—anticipate need for early biventricular support

• Myocardial recovery can be assessed with step-wise reverse RAMP protocols
Thank You

University of Chicago Advanced Heart Failure and Cardiology

Nir Uriel MD
Gabriel Sayer MD
Gene Kim MD
Nitasha Sarswat MD
Sara Kalantari MD
Jayant Raikhelkar MD
Bryan Smith MD
Ann Nguyen MD
Ben Chung MD
Teru Imamura MD PhD

Valluvan Jeevanandam MD
Take Ota MD PhD
Tae Song MD
David Onsager MD