Discussion of CANTOS
"Relationship of CRP Reduction to Cardiovascular Event Reduction Following Treatment with Canakinumab"

Ira Tabas, M.D., Ph.D.
Richard J. Stock Professor of Medicine, Cell Biology, and Physiology
iat1@columbia.edu
Atherosclerotic Cardiovascular Disease (CVD)

circulating apoB-lipoproteins (LDL, remnant lipoproteins)

Subendothelial apoB-lipoproteins
Atherosclerotic Cardiovascular Disease (CVD)

circulating apoB-lipoproteins (LDL, remnant lipoproteins)

Subendothelial apoB-lipoproteins

Disturbed blood flow
Systemic risk factors (smoking, diabetes, etc.)

Genetic factors
Age/clonal hematopoiesis

Inflammation
Defective resolution of inflammation
Atherosclerotic Cardiovascular Disease (CVD)

- Circulating apoB-lipoproteins (LDL, remnant lipoproteins)
- Subendothelial apoB-lipoproteins
 - Disturbed blood flow
 - Systemic risk factors (smoking, diabetes, etc.)
- Inflammation
- Defective resolution of inflammation
- Atherosclerosis
- CVD
Proven Therapeutic Approach

- Circulating apoB-lipoproteins (LDL, remnant lipoproteins)

↓ Subendothelial apoB-lipoproteins

- Disturbed blood flow
- Systemic risk factors (smoking, diabetes, etc.)
- Genetic factors
- Age/clonal hematopoiesis

↓ Inflammation

↓ Defective resolution of inflammation

↓ Atherosclerosis

↓ CVD
Highly Intensive LDL Lowering in Highest Risk Patients

- Circulating apoB-lipoproteins (LDL, remnant lipoproteins)

↓↓ Subendothelial apoB-lipoproteins

- Disturbed blood flow
- Systemic risk factors (smoking, diabetes, etc.)

↓↓ Inflammation

↓↓ Defective resolution of inflammation

↓↓ Atherosclerosis

↓↓ CVD
Unproven Therapeutic Hypothesis

- Circulating apoB-lipoproteins (LDL, remnant lipoproteins)

↓ Subendothelial apoB-lipoproteins

- Disturbed blood flow
- Systemic risk factors (smoking, diabetes, etc.)
- Genetic factors
- Age/clonal hematopoiesis

↓ Inflammation

↓ Defective resolution of inflammation

↓↓ Atherosclerosis

↓↓ CVD
Key Issues About Targeting Inflammation

• Is there a *dominant* inflammatory factor?

• Will *compensatory* responses to anti-inflammatory therapy prevent efficacy?

• Will compromise of *host defense* cause unacceptable adverse events?
The Premise of CANTOS

Subendothelial apoB-LPs
Cholesterol

Disturbed blood flow
Genetic factors
Systemic risk factors
Age/clonal hematopoiesis

IL-1β

Atherosclerosis

CVD
(Major Adverse Cardiac Events-MACE)

IL-6

liver
thrombotic factors
CRP

Libby and others
CANTOS
Anti-IL-1β Therapy of High-Risk Subjects

Ridker et al. (2017) *NEJM* 377:119-1131
CANTOS
A Landmark Study

- Conceptual advance: inflammation, importance of IL-1β in atherosclerotic CVD
- Future promise of targeting inflammation to combat CVD

Ridker et al. (2017) *NEJM* 377:119-1131
CANTOS

Issues Arising From the Original Analysis

• Dose effect
• Host defense
• ? Similar benefit by lowering LDL further ?
• Cardiovascular mortality
• Is benefit related to level of inflammation suppression
Host Defense
Fatal Infections or Sepsis

Incidence rates of fatal infections or sepsis per 100 person-years

<table>
<thead>
<tr>
<th>Dosage</th>
<th>Incidence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0.00</td>
</tr>
<tr>
<td>50-mg</td>
<td>0.12</td>
</tr>
<tr>
<td>150-mg</td>
<td>0.24</td>
</tr>
<tr>
<td>300-mg</td>
<td>0.36</td>
</tr>
<tr>
<td>All doses</td>
<td>0.36</td>
</tr>
</tbody>
</table>

$P = 0.02$
CANTOS

Issues Arising From the Original Analysis

- Dose effect
- Host defense
- ? Similar benefit by lowering LDL further ?
- Cardiovascular mortality
- Is benefit related to level of inflammation suppression
Room to Move in Lowering LDL?

FOURIER

Statin + Placebo

Statin + Evolocumab

HR = 0.85 for MACE (P<0.001)

Sabatine et al. (2017) NEJM 376:1713-1722
? Room to Move in Lowering LDL ?

FOURIER

CANTOS mean LDL = 82.8 mg/dl

Statin + Placebo

Statin + Evolocumab

HR = 0.85 for MACE (P<0.001)

Sabatine et al. (2017) NEJM 376:1713-1722
CANTOS
Issues Arising From the Original Analysis

• Dose effect
• Host defense
• ¿ Similar benefit by lowering LDL further ?
• Cardiovascular mortality
• Is benefit related to level of inflammation suppression
CANTOS: CRP-Response Subgroup Analysis

Implications

• Strengthens biological premise

• Addresses issues of concern from original analysis
 • Greater MACE effect in responders with all 3 doses
 • Reduced CV and all-cause mortality in responders

• Fatal infections were similar among responders and non-responders
 • Potential for higher benefit:risk ratio in responders
 • ? Mechanism ?

• Hypothesis-generating for future prospective studies using a targeted approach
CANTOS: CRP-Response Subgroup Analysis

Implications

- Strengthens biological premise
- Addresses issues of concern from original analysis
 - Greater MACE effect in responders with all 3 doses
 - Reduced CV and all-cause mortality in responders
- Fatal infections were similar among responders and non-responders
 - Potential for higher benefit:risk ratio in responders
 - ? Mechanism ?
- Hypothesis-generating for future prospective studies using a targeted approach
CANTOS: CRP-Response Subgroup Analysis
Implications

- Strengthens biological premise

- Addresses issues of concern from original analysis
 - Greater MACE effect in responders with all 3 doses
 - Reduced CV and all-cause mortality in responders

- Fatal infections were similar among responders and non-responders
 - Potential for higher benefit:risk ratio in responders
 - ? Mechanism ?

- Hypothesis-generating for future prospective studies using a targeted approach
CANTOS: CRP-Response Subgroup Analysis

Implications

• Strengthens biological premise

• Addresses issues of concern from original analysis
 • Greater MACE effect in responders with all 3 doses
 • Reduced CV and all-cause mortality in responders

• Fatal infections were similar among responders and non-responders
 • Potential for higher benefit:risk ratio in responders
 • ? Mechanism ?

• Hypothesis-generating for future prospective studies using a targeted approach
Where do we go from here?

• Further prospective testing of anti-inflammatory Rx
 • Optimize efficacy and minimize adverse effects via targeted approach and infectious disease monitoring
 • Optimize route of delivery and lower cost, *e.g.*, oral inflammasome inhibitors
 • ? Use in primary prevention in select subjects
 • Integration with intense LDL lowering
 • Integration with drugs for diabetes that show a CV-protective effect (*SGLT2* inhibitors, liraglutide)
 • Drugs that enhance resolution of inflammation
Where do we go from here?

- Further prospective testing of anti-inflammatory Rx
 - Optimize efficacy and minimize adverse effects via targeted approach and infectious disease monitoring
 - Optimize route of delivery and lower cost, *e.g.*, oral inflammasome inhibitors
 - Use in primary prevention in select subjects
 - Integration with intense LDL lowering

- Integration with drugs for diabetes that show a CV-protective effect (*SGLT2* inhibitors, liraglutide)

- Drugs that enhance resolution of inflammation
Where do we go from here?

• Further prospective testing of anti-inflammatory Rx
 • Optimize efficacy and minimize adverse effects via targeted approach and infectious disease monitoring
 • Optimize route of delivery and lower cost, e.g., oral inflammasome inhibitors
 • ? Use in primary prevention in select subjects
 • Integration with intense LDL lowering
• Integration with drugs for diabetes that show a CV-protective effect (SGLT2 inhibitors, liraglutide)
• Drugs that enhance resolution of inflammation
Where do we go from here?

- Further prospective testing of anti-inflammatory Rx
 - Optimize efficacy and minimize adverse effects via targeted approach and infectious disease monitoring
 - Optimize route of delivery and lower cost, e.g., oral inflammasome inhibitors
 - ? Use in primary prevention in select subjects
 - Integration with intense LDL lowering
- Integration with drugs for diabetes that show a CV-protective effect (SGLT2 inhibitors, liraglutide)
- Drugs that enhance resolution of inflammation
Treatment of High-Risk Patients

- Untreated
- Maximum statin effect
- Intense LDL lowering or targeted Inflamm Rx
- Intense LDL lowering and targeted Inflamm Rx

Relative CV risk
Where do we go from here?

• Further prospective testing of anti-inflammatory Rx
 • Optimize efficacy and minimize adverse effects via targeted approach and infectious disease monitoring
 • Optimize route of delivery and lower cost, e.g., oral inflammasome inhibitors
 • ? Use in primary prevention in select subjects
 • Integration with intense LDL lowering

• Integration with drugs for diabetes that show a CV-protective effect (SGLT2 inhibitors, liraglutide)

• Drugs that enhance resolution of inflammation
Where do we go from here?

- Further prospective testing of anti-inflammatory Rx
 - Optimize efficacy and minimize adverse effects, via targeted approach and infectious disease monitoring
 - Optimize route of delivery and lower cost, e.g., oral inflammasome inhibitors
 - Use in primary prevention in select subjects
 - Integration with intense LDL lowering

- Integration with drugs for diabetes that show a CV-protective effect (SGLT2 inhibitors, liraglutide)

- Drugs that enhance resolution of inflammation
Nature's Way of Resolving Inflammation May Spare Host Defense

Inflammatory response

Cytokines (e.g., IL-1β, TNFα)

Kill pathogens

... but at the expense of collateral tissue damage
Nature's Way of Resolving Inflammation May Spare Host Defense

Inflammatory response

Cytokines (e.g., IL-1β, TNFα)
- Kill pathogens
 . . . but at the expense of collateral tissue damage

Lipid and protein resolution mediators (e.g., resolvins, IL-10)
- Dampen inflammation
- Repair tissue damage
- Clear residual pathogens
Advanced human atheroma have impaired resolution and are deficient in resolution mediators
Therapeutic Potential of Resolving Mediator Therapy in the Post-CANTOS Era

• Advanced human atheroma have impaired resolution and are deficient in resolution mediators

• Resolution mediator therapy blocks plaque progression in animal models of advanced atherosclerosis
The Outlook for Testing Inflammation-
Targeting Strategies

Pre-CANTOS
The Outlook for Testing Inflammation-Targeting Strategies

Pre-CANTOS

Post-CANTOS