BRUISE CONTROL 2
Discussion

Mina K. Chung, M.D.
Section of Cardiac Electrophysiology and Pacing
Department of Cardiovascular Medicine
Heart and Vascular Institute
Department of Molecular Cardiology
Lerner Research Institute

No relevant disclosures for this presentation
Decision Pathway for Peri-procedural Management of Anticoagulation

Major Randomized Controlled Trials on the Management of Perioperative Anticoagulation

- BRUISE CONTROL
 - Continued warfarin vs. heparin bridging for PM, ICD procedures

- BRIDGE
 - Interrupted warfarin, bridging vs. no bridging

- BRUISE CONTROL 2
 - Interrupted vs. continued NOAC for PM, ICD procedures
BRUISE CONTROL

• PM or ICD surgery, est. >5%/yr risk of TE
 – Prosthetic MVR
 – Caged ball or tilting disc AVR
 – Bileaflet AVR and AF/FL, prior CVA/TIA, HTN, DM, CHF, age >75
 – AF/FL ass’d with RHD, CHADS$_2$ >2, or CVA/TIA within 3 mo, plan for DCC
 – Recent (3 mo) venous TE
 – Severe thrombophilia

• Single blind RCT – **continued warfarin vs. heparin bridging**

• Continued warfarin: INR target on DOS ≤3.0, except ≤3.5 for mechanical valves

• Bridging: warfarin held 5d, heparin 3d (IV heparin stopped 4 hrs pre, last LMWH 1d pre), resumed 24 hr post til INR therapeutic

• Primary outcome: clinically significant hematoma

Birnie DH, et al. NEJM 2013;368:2084-2093
BRUISE CONTROL

Birnie DH, et al. NEJM 2013;368:2084-2093

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Heparin Bridge N=338</th>
<th>Continued warfarin N=343</th>
<th>RR</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically significant hematoma</td>
<td>16.0%</td>
<td>3.5%</td>
<td>0.19 (0.10-0.36)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prolonged hospitalization</td>
<td>4.7%</td>
<td>1.2%</td>
<td>0.24 (0.08-0.72)</td>
<td>0.006</td>
</tr>
<tr>
<td>Interrupted anticoagulation</td>
<td>14.2%</td>
<td>3.2%</td>
<td>0.20 (0.10-0.39)</td>
<td><0.001</td>
</tr>
<tr>
<td>Required evacuation</td>
<td>2.7%</td>
<td>0.6%</td>
<td>0.21 (0.05-1.00)</td>
<td>0.03</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>1.2%</td>
<td>0.3%</td>
<td>0.12</td>
</tr>
<tr>
<td>Cardiac tamponade</td>
<td>0.3%</td>
<td>0</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>0.3%</td>
<td>0.3%</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Lead dislodgement</td>
<td>1.2%</td>
<td>0.3%</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Device system infection</td>
<td>1.8%</td>
<td>0.6%</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Superficial wound infection</td>
<td>0.9%</td>
<td>0.3%</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>0</td>
<td>0.3%</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>TIA</td>
<td>0</td>
<td>0.3%</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Non-CNS embolism</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>DVT</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Valve thrombosis</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

DSMB stopped the trial after the 2nd interim analysis due to a significantly higher rate of clinically significant hematoma in the heparin bridge group
BRIDGE Trial

- Randomized, DB, placebo-controlled trial during peri-op interruption of warfarin
 - LMWH bridging vs. no bridging
- Warfarin held 5 days pre, resumed within 24 hr post
- Dalteparin 100 IU/kg or placebo – 3d pre to 5-10d post
- Exclusions:
 - Mechanical prosthetic valve
 - Stroke, TIA, systemic embolism within 12 wks
 - Venous thromboembolism (DVT, PE) within 12 wks
 - Major bleeding within 6 wks
 - Severe renal insufficiency (CrCl<30 ml/min)
 - Thrombocytopenia
 - Cardiac surgery, intracranial or intraspinal neurosurgery, high-risk non-surgical procedures (e.g. brain biopsy)

Douketis et al. NEJM 2015;373:823-33
BRIDGE Trial

<table>
<thead>
<tr>
<th></th>
<th>No Bridge N=918</th>
<th>Bridged N=895</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial TE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>0.4%</td>
<td>0.3%</td>
<td>0.01 noninferiority</td>
</tr>
<tr>
<td>TIA</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.73 superiority</td>
</tr>
<tr>
<td>Systemic embolism</td>
<td>0.2%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1.3%</td>
<td>3.2%</td>
<td>0.005 superiority</td>
</tr>
<tr>
<td>Death</td>
<td>0.5%</td>
<td>0.4%</td>
<td>0.88 superiority</td>
</tr>
<tr>
<td>MI</td>
<td>0.8%</td>
<td>1.6%</td>
<td>0.10</td>
</tr>
<tr>
<td>DVT</td>
<td>0</td>
<td>0.1%</td>
<td>0.25</td>
</tr>
<tr>
<td>PE</td>
<td>0</td>
<td>0.1%</td>
<td>0.25</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>12.0%</td>
<td>20.9%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

- Significantly higher major and minor bleeding with bridging compared to no bridging.
- No significantly increased risk of arterial or venous TE without bridging.

Douketis et al. NEJM 2015;373:823-33
BRUISE CONTROL 2

• Inclusion criteria
 – CIED surgery – de novo, PG change, lead replacement or pocket revision
 – Nonrheumatic AF/AFl at mod-high risk of arterial TE
 • $\text{CHA}_2\text{DS}_2\text{-VASc} \geq 2$ or plan for DCC or DFT testing

• Exclusion criteria
 – GFR <30 ml/min
 – Rheumatic valve disease with HD significant valve lesion
 – Mechanical heart valve
 – Active device infection
BRUISE CONTROL 2

<table>
<thead>
<tr>
<th>Event</th>
<th>Continued DOAC N=334</th>
<th>Interrupted DOAC N=334</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically significant hematoma</td>
<td>2.1%</td>
<td>2.1%</td>
<td>0.973</td>
</tr>
<tr>
<td>Prolonged hospitalization</td>
<td>0.3%</td>
<td>0.6%</td>
<td>1.000</td>
</tr>
<tr>
<td>Interrupted anticoagulation</td>
<td>2.1%</td>
<td>2.1%</td>
<td>0.973</td>
</tr>
<tr>
<td>Required evacuation</td>
<td>0.6%</td>
<td>0.3%</td>
<td>0.621</td>
</tr>
<tr>
<td>All cause mortality</td>
<td>0.6%</td>
<td>0.3%</td>
<td>0.621</td>
</tr>
<tr>
<td>Cardiac tamponade</td>
<td>0.3%</td>
<td>0.3%</td>
<td>1.000</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>0.6%</td>
<td>0.0%</td>
<td>0.245</td>
</tr>
<tr>
<td>Stroke</td>
<td>0.3%</td>
<td>0.3%</td>
<td>1.00</td>
</tr>
<tr>
<td>TIA</td>
<td>0%</td>
<td>0%</td>
<td>--</td>
</tr>
</tbody>
</table>

DSMB and Steering Committee stopped the study at the 2nd interim analysis – no difference in outcomes
Implications of BRUISE CONTROL 1 & 2 and BRIDGE for CIED Procedures

• Continued or interrupted warfarin is preferred over interruption with heparin bridging

• Continued or interrupted NOAC is acceptable
 – No ↑ in CVA/TIA with interrupted NOAC
 – No ↑ in clinically significant hematoma with continued NOAC
 – Possible Exceptions: High thrombotic risk pts excluded from BRUISE CONTROL 2 (HD significant rheumatic valve disease, mechanical heart valve)

• Validated a NOAC holding regimen
 – Rivaroxaban, apixaban – 2 days
 – Dabigatran – based on GFR
 – Resume ≥ 24 hrs after surgery
Implications: Warfarin

• The BRUISE CONTROL and BRIDGE studies support continued or interrupted warfarin for CIED procedures and *interrupted warfarin without bridging for most other procedures*
 – Lack of higher TE risk without bridging in BRIDGE supports this approach for *high bleed risk patients* excluded from BRIDGE
 • Major bleeding within 6 wks
 • Severe renal insufficiency (CrCl<30 ml/min)
 • Thrombocytopenia
 • Cardiac, intracranial or intraspinal neurosurgery

• Bridging may still be advisable for the excluded *higher TE risk pts* (Mechanical prosthetic valve; Stroke, TIA, systemic embolism within 12 wks)
Implications: NOACs

• The absence of differences in CVA/TIA incidence with *holding NOACs for short periods of time* compared to continued NOAC use in BRUISE CONTROL 2 suggests this approach may be used for
 – other surgical procedures
 – High bleed risk pts excluded from BRUISE CONTROL 2 (active device infection/need for lead extraction, GFR<30)

• Exceptions: High thrombotic risk pts excluded from BRUISE CONTROL 2 (Rheumatic valve disease with hemodynamically significant valve lesion; mechanical heart valve)
Limitations and Caveats

• Power was limited for assessment of thromboembolism endpoints, including stroke and TIA, and further limited by the premature stopping of the study
 – Stopping a study early: saves $, but difficulty interpreting 2o endpoints and potential reduction in clinical applicability for these endpoints
 – Futility analysis for CVA/TIA/TE endpoints would be of interest (rates were the same in both BRUISE CONTROL 2 groups)
Thank you

and Congratulations to the

BRUISE CONTROL Investigators