STUDY OF A TELE-PHARMACY INTERVENTION FOR CHRONIC DISEASES TO IMPROVE TREATMENT ADHERENCE

THE STIC2IT RANDOMIZED CONTROLLED TRIAL

Niteesh K. Choudhry, MD, PhD

on behalf of:

Thomas Isaac, MD, MBA, MPH; Julie C. Lauffenburger, PharmD, PhD; Chandrasekar Gopalakrishnan, MD, MPH; Nazleen F. Khan, BS; Marianne Lee, PharmD; Amy Vachon, PharmD; Tanya L. Iliadis, PharmD; Whitney Hollands, PharmD; Scott Doheny, PharmD; Sandra Elman, PharmD; Jacqueline M. Kraft, PharmD; Samrah Naseem, PharmD; Joshua J. Gagne, PharmD, ScD; Cynthia A. Jackevicius, PharmD, MSc; Michael A. Fischer, MD, MS; Daniel H. Solomon, MD, MPH; Thomas D. Sequist, MD, MPH

Divisions of Pharmacoepidemiology and Pharmacoeconomics, Rheumatology, and General Internal Medicine, and Center for Healthcare Delivery Sciences, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School; Atrius Health; Western University of Health Sciences; the Institute for Clinical Evaluative Sciences; Harvard Department of Health Care Policy
Medication non-adherence is extremely common

- One-half of patients with cardiometabolic conditions do not adhere to their prescribed medications
 - Leads to adverse clinical consequences and $100-$300 billion in preventable health spending each year in the U.S. alone

- Interventions to improve adherence have been modestly effective
 - Do not adequately address each individual’s unique adherence barriers
 - Imprecisely targeted to patients who do not need adherence assistance

- Even effective interventions are difficult to sustain
 - Often require new infrastructure and/or are expensive
OBJECTIVE

STIC2IT: Study of a Tele-pharmacy Intervention for Chronic diseases to(2) Improve Treatment adherence

- To evaluate the effect of a medication adherence intervention for diabetes, hypertension, and hyperlipidemia that was:

 - Targeted → FOCUSED ON PATIENTS MOST LIKELY TO BENEFIT
 - Multi-component → ADDRESSED MULTIPLE BARRIERS
 - Behaviorally-tailored → PERSONALIZED TO PATIENT NEED
 - Delivered by practice-embedded pharmacists → INTEGRATED INTO EXISTING CARE
 - Technologically-enabled → IMPROVED EFFICIENCY

ADULT PATIENTS OF A LARGE MULTI-SPECIALTY GROUP PRACTICE WITH DIABETES, HYPERTENSION OR HYPERLIPIDEMIA CONTACTED AND OFFERED:

▪ pharmacist telephone consultation (using brief negotiated interviewing)
▪ text messages (reminders or motivation)
▪ automated individual progress reports

RANDOMIZED PRACTICE SITES (N=14)

USUAL CARE

POOR DISEASE CONTROL (based on EHR data)

NON-ADHERENT (based on claims data)

INTERRUPTION

CONTUCTED AND OFFERED:

▪ pharmacist telephone consultation (using brief negotiated interviewing)
▪ text messages (reminders or motivation)
▪ automated individual progress reports

Content tailored to “patient activation” + adherence barriers

• ENROLLMENT: Aug 2015-July 2016
• END OF FOLLOW-UP: July 2017

clinicaltrials.gov NCT02512276
OUTCOMES

Outcomes assessed using routinely-collected data

- Outcomes assessed during the 12 months after randomization

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Data Source</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medication adherence</td>
<td>Prescription health insurance data</td>
<td>Average adherence (“proportion of days covered”) for eligible medications at the time of randomization</td>
</tr>
<tr>
<td>Disease control</td>
<td>Electronic health record data</td>
<td>Proportion of patients meeting guideline targets for: (a) all eligible conditions and (b) at least 1 eligible condition</td>
</tr>
</tbody>
</table>

- Primary analyses conducted on an intention-to-treat basis
 - Powered for a 2.5% mean improvement in adherence assuming that <50% of patients would agree to a pharmacist consultation
RESULTS

Enrollment

ELIGIBLE SUBJECTS
(n=4078)

INTERVENTION
(n=2038)
Left practice (n=10)
MD declined (n=127)
Opted-out by pharmacist (n=97)

PROGRESS REPORTS
(n=1804, 89%)

USUAL CARE
(n=2040)

AS TREATED ANALYSIS

USUAL CARE
(n=2040)

PHARMACIST CONSULT
(n=1069, 52%)
Left practice (n=10)
MD declined (n=127)
Unreachable (n=268)
Refused (n=457)
No show (n=107)

PRIMARY ANALYSIS

TEXT MESSAGES
(n=194, 9.5%)

PILLBOXES
(n=137, 6.7%)

Clinical pharmacist telephone consultations lasted a mean of 24.9 minutes; 1050 (98.2%) patients completed at least 2 calls and 175 (16.4%) patients received 3 or more calls
RESULTS

Baseline characteristics

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>USUAL CARE (N=2040)</th>
<th>INTERVENTION (N=2038)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean years*</td>
<td>60.4</td>
<td>59.2</td>
</tr>
<tr>
<td>Male sex</td>
<td>54.7%</td>
<td>55.0%</td>
</tr>
<tr>
<td>White race*</td>
<td>53.6%</td>
<td>60.6%</td>
</tr>
<tr>
<td>Qualifying conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>72.0%</td>
<td>73.7%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>25.9%</td>
<td>23.8%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>12.1%</td>
<td>11.9%</td>
</tr>
<tr>
<td>Charlson comorbidity score, mean</td>
<td>0.90</td>
<td>0.74</td>
</tr>
<tr>
<td>Baseline disease control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol, mean mg/dL,</td>
<td>204.8</td>
<td>207.8</td>
</tr>
<tr>
<td>Systolic blood pressure, mean mmHg</td>
<td>149.9</td>
<td>149.2</td>
</tr>
<tr>
<td>Hemoglobin A<sub>1c</sub>, mean</td>
<td>9.8</td>
<td>9.5</td>
</tr>
<tr>
<td>Baseline adherence, mean</td>
<td>57.0%</td>
<td>57.2%</td>
</tr>
</tbody>
</table>

* Standardized mean difference for age and race/ethnicity were >0.1; there were no other significant differences
PRIMARY OUTCOME
Adherence

MONTHLY ADHERENCE

<table>
<thead>
<tr>
<th>Months after randomization</th>
<th>Intervention</th>
<th>Usual Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46.2%</td>
<td>42.1%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTENTION TO TREAT:
- HYPERLIPIDEMIA: 4.6% (p<0.001)
- HYPERTENSION: 8.5% (p<0.001)
- DIABETES: -0.2% (p=0.86)

AS TREATED:
- HYPERLIPIDEMIA: \(\uparrow 4.7\%\) (p<0.001)
- HYPERTENSION: \(\uparrow 10.4\%\) (p<0.001)

Median (IQR) time from randomization to pharmacist call (when it occurred): 22 (17 to 32) days
SUBGROUP ANALYSES

Adherence

OVERALL

≥ 65 years
< 65 years

Female
Male

White
Black
Other

Baseline adherence < 50%
Baseline adherence ≥ 50%

1 eligible condition
2 or 3 eligible conditions

Interaction p-value

p=0.19
p=0.03
p=0.56
p=0.44
p=0.77

Absolute difference in adherence (%)
SECONDARY OUTCOMES

Good disease control

Mean duration between randomization and outcome assessment: 229.2 days
The STIC2IT intervention improved adherence

- An intervention for patients with diabetes, hypertension, and hyperlipidemia with poor medication adherence and suboptimal disease control:

- Effect size was similar to those achieved by more labor intensive interventions
- Used highly-pragmatic research methods to facilitate the generalizability of the results
SUMMARY AND IMPLICATIONS

Intervention did not improve secondary clinical outcomes

Routinely-collected data used inaccurate?

Adherence improvement too small?

Patients may have required therapeutic intensification?

FUTURE INTERVENTIONS MAY NEED TO:

- Be more intensive while still pragmatic
- Focus on a more impactable patient population
- Simultaneously address adherence and other barriers to optimal disease control