Technology Fluency is not a Barrier to User Adoption of a Mobile Health Wrist-worn Physical Activity (PA) Monitor System

The Washington, D.C. Cardiovascular Health and Needs Assessment

Leah R. Yingling
Tiffany M. Powell-Wiley, MD, MPH, FAHA
National Heart, Lung, and Blood Institute
Presenter Disclosure Information

FINANCIAL DISCLOSURE:
No relevant financial relationships exist.

The views expressed in this presentation are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.
Co-authors

National Institutes of Health
Tiffany Powell-Wiley
Marlene Peters-Lawrence
Gwenyth Wallen
Valerie Mitchell
Alyssa Brooks
Dana Sampson
Johnetta Saygbe
JaWanna Henry
Samantha Thomas
Joel Adu-Brimpong
Kenneth Wiley Jr.

Howard University Nutritional Sciences
Avis Graham
Lennox Graham
Allan Johnson

University of Texas Southwestern Medical Center
Colby Ayers
“We know the least about those populations with the highest obesity rates and those who bear the greatest burden of obesity associated disease: racial/ethnic minorities and the socioeconomically disadvantaged. This fails to deliver on the promise of digital health approaches, which have potential for extending the reach of intervention approaches.”

Burke et al.

- Creating
- Collaborating
- Connecting

- Navigation skills
- Accessing skills

- Distribution
- Infrastructure
- Tools

- Innovation
- Use
- Access

“Have Nots”

“Haves”

Digital Divide
TECHNOLOGY FLUENCY

- Navigation skills
- Accessing skills

Use

“Have Nots”

Digital Divide

“Haves”
Will technology fluency impact usage of a community-based wearable PA-monitor system?
We targeted Washington, D.C. wards with the highest obesity rates

Washington, DC
Median Household Income = $66,000*

Ward 5 Median Household Income = $53,000*

*p<0.01 comparing income in Wards vs. overall city

Ward 7 Median Household Income= $39,000*

Ward 8 Median Household Income = $30,000*

Behavioral Risk Factor Surveillance Survey (CDC); U.S. Census 2009-13
Community-based Cardiovascular Health and Needs Assessment

Station 1
Participant Registration

Station 2
• Blood Testing
• Blood Pressure
• Body Size Measurement

Station 3
Survey Assessment

Station 4
Device Training

Station 5
Review of Results with Physician

Station 6
Check out/Voucher Distribution
Welcome & wristband distribution

Overview of expectations for 30-day period

Instructional Video #1: Using the wristband and online account

Instructional Video #2: Syncing wristband at hub

Question & Answers

One-on-one training, as needed
Data was uploaded weekly to the hub.
The hub allowed for us to overcome potential technology barriers

- Socioeconomic and geographic barriers to broadband network and Wi-Fi access
- Limited access to computers
- Restricted data plans for use of mHealth devices
Technology fluency was captured during survey completion at Station 3.
Tech fluency was measured with the Computer-Email-Web Fluency Scale.

101. The following questions are about a variety of computer, email and web-related tasks. For each statement, check one box to indicate your answer choice.

<table>
<thead>
<tr>
<th></th>
<th>Not at all</th>
<th>Not so well</th>
<th>Okay</th>
<th>Well</th>
<th>Very Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. I can switch a computer on.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>b. I can restart a computer.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

- Participants (n=99) completed a survey on technology access, usage, and fluency.
- 17 items measured.
HYPOTHESIS:
Technology fluency would differ among those who used the PA-monitoring system and those who did not.
RESULTS
81% of participants uploaded PA data

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Users (N=81)</th>
<th>Non-Users (N=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (SD)*</td>
<td>60 (12)</td>
<td>57 (13)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>22%</td>
<td>16%</td>
</tr>
<tr>
<td>African-American Race</td>
<td>99%</td>
<td>100%</td>
</tr>
<tr>
<td>Body Mass Index, kg/m² (SD)*</td>
<td>32 (7)</td>
<td>35 (7)</td>
</tr>
</tbody>
</table>

*Standard Deviation
PA levels were suboptimal among users

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Users (N=81)</th>
<th>Non-Users (N=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (SD)*</td>
<td>60 (12)</td>
<td>57 (13)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>22%</td>
<td>16%</td>
</tr>
<tr>
<td>African-American Race</td>
<td>99%</td>
<td>100%</td>
</tr>
<tr>
<td>Body Mass Index, kg/m² (SD)*</td>
<td>32 (7)</td>
<td>35 (7)</td>
</tr>
<tr>
<td>Mean Steps (SD)*</td>
<td>7013 (5182)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>[999, 20,628]</td>
<td></td>
</tr>
</tbody>
</table>

*Standard Deviation

23% of users <5000 steps
PA monitor users had lower annual household income

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Users (N=81)</th>
<th>Non-Users (N=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Income <$60,000</td>
<td>51%</td>
<td>27% p= 0.01</td>
</tr>
<tr>
<td>Employed</td>
<td>46%</td>
<td>56%</td>
</tr>
<tr>
<td>Some College Education</td>
<td>76%</td>
<td>83%</td>
</tr>
<tr>
<td>Has Health Insurance</td>
<td>98%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Technology access was similar across user and non-user groups

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Users (N=81)</th>
<th>Non-Users (N=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Income < $60,000</td>
<td>51%</td>
<td>27%</td>
</tr>
<tr>
<td>Employed</td>
<td>46%</td>
<td>56%</td>
</tr>
<tr>
<td>Some College Education</td>
<td>76%</td>
<td>83%</td>
</tr>
<tr>
<td>Has Health Insurance</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>Computer Access</td>
<td>94%</td>
<td>94%</td>
</tr>
<tr>
<td>Mobile Phone Owner</td>
<td>88%</td>
<td>89%</td>
</tr>
</tbody>
</table>
Computer use skills were similar across user and non-user groups

<table>
<thead>
<tr>
<th>Task</th>
<th>Users</th>
<th>Non-Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can switch a computer on.</td>
<td>3.96</td>
<td>4.06</td>
</tr>
<tr>
<td>I can restart a computer.</td>
<td>3.89</td>
<td>4.17</td>
</tr>
<tr>
<td>I can begin typing a new document.</td>
<td>3.80</td>
<td>4.00</td>
</tr>
<tr>
<td>I can open a previously saved file from any directory.</td>
<td>3.76</td>
<td>3.89</td>
</tr>
<tr>
<td>I can use “save as” when appropriate.</td>
<td>3.81</td>
<td>3.89</td>
</tr>
<tr>
<td>I can print a document.</td>
<td>3.89</td>
<td>3.94</td>
</tr>
<tr>
<td>Total</td>
<td>3.85</td>
<td>3.99</td>
</tr>
</tbody>
</table>

*P-value=0.05

Minimum= 1: No Fluency → Maximum= 5: High Fluency
Email use skills were similar across user and non-user groups

<table>
<thead>
<tr>
<th>Task</th>
<th>Users</th>
<th>Non-Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can open an email program.</td>
<td>3.86</td>
<td>4.00</td>
</tr>
<tr>
<td>I can read new email messages</td>
<td>3.92</td>
<td>4.06</td>
</tr>
<tr>
<td>I can open a file attached to an email.</td>
<td>3.80</td>
<td>3.88</td>
</tr>
<tr>
<td>I can delete read email messages.</td>
<td>3.88</td>
<td>4.00</td>
</tr>
<tr>
<td>I can send an email message.</td>
<td>3.82</td>
<td>4.06</td>
</tr>
<tr>
<td>I can use the reply and forward features for email.</td>
<td>3.86</td>
<td>3.94</td>
</tr>
<tr>
<td>Total</td>
<td>3.88</td>
<td>3.99</td>
</tr>
</tbody>
</table>

Minimum= 1: No Fluency → Maximum= 5: High Fluency
Web navigation skills were similar across user and non-user groups

<table>
<thead>
<tr>
<th>Task</th>
<th>Users</th>
<th>Non-Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can use a browser to navigate the web.</td>
<td>3.75</td>
<td>3.94</td>
</tr>
<tr>
<td>I can open a web address directly.</td>
<td>3.69</td>
<td>3.89</td>
</tr>
<tr>
<td>I can identify the host server from the web address.</td>
<td>3.54</td>
<td>3.72</td>
</tr>
<tr>
<td>I can use “back” and “forward” to move between web pages.</td>
<td>3.80</td>
<td>3.72</td>
</tr>
<tr>
<td>I can use search engines (e.g. Google).</td>
<td>3.80</td>
<td>3.67</td>
</tr>
<tr>
<td>Total</td>
<td>3.70</td>
<td>3.78</td>
</tr>
</tbody>
</table>

Minimum = 1: No Fluency → Maximum = 5: High Fluency
Strengths

• Community-based data collection hub to overcome barriers to network and Wi-Fi access

• Validated tool to capture technology fluency

• Contributes to prioritized mHealth research among racial/ethnic minority and socially disadvantaged populations
Limitations

• Results not generalizable to all populations

• 30-day period may not be sufficient to assess engagement, adherence and attrition

• Limited data available on wearable device or smartphone ownership
Conclusions and Implications

• PA levels are suboptimal in target population.

• Lower technology fluency does not appear to impede engagement with this PA-monitoring system, despite lower income among users.

• The use of a hub-based, mHealth PA-monitoring system may aid in reaching at-risk communities with varying degrees of technology fluency.
Acknowledgements

• Study Participants
• Powell-Wiley Research Group
 o Priscilla Agyemang
 o Riley Cooper-McCann
 o Michael McClurkin
 o Visakha Suresh
 o Valerie Mitchell
 o Johnetta Saygbe
 o JaWanna Henry
 o Nathan Coffey
 o Samantha Thomas
 o Joel Adu-Brimpong

• Associate Investigators on Protocols 13-H-0183
• Faith-based Organizations
 o Plymouth Congregational UCC
 o St John CME Church
 o Pilgrim Rest Baptist Church
 o New Samaritan Baptist Church
 o Pennsylvania Ave Baptist Church
 o First Baptist Church, Washington DC

• Members of DC Cardiovascular Health and Obesity Collaborative
Thank you!

leah.yingling@nih.gov
tiffany.powell-wiley@nih.gov
Sub-optimal PA levels among most participants in pilot testing

N=8 (ages 28-70)

*Median steps= 7580 (4967, 11972)

10,000 steps/day (active)

5,000 steps/day (sedentary)

Yingling LR et al., Powell-Wiley TM (2016) JMIR mHealth uHealth
PA levels can be a target for intervening on obesity

<table>
<thead>
<tr>
<th>Physical Activity (Mean steps/day by wristband PA monitor)</th>
<th>Normal Weight</th>
<th>Overweight</th>
<th>Class I Obese</th>
<th>Class II Obese</th>
<th>Class III Obese</th>
<th>P-trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>7698</td>
<td>7036</td>
<td>8114</td>
<td>6752</td>
<td>5131</td>
<td>0.05</td>
</tr>
<tr>
<td>Men</td>
<td>7666</td>
<td>7379</td>
<td>5276</td>
<td>9972</td>
<td>6037</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Thomas, S, Yingling, L.R .. Powell-Wiley TM– Submitted