Welcome New Council Chair and Vice Chair

Benjamin S. Abella, MD, MPhil, FAHA, former Vice Chair of the 3CPR Council, will take over the reins as 3CPR Council Chair. Dr. Abella attended medical school at Johns Hopkins School of Medicine followed by dual internal medicine and emergency medicine training at the University of Pennsylvania.

Dr. Abella studies sudden cardiac arrest and has authored more than 100 peer-reviewed manuscripts and monographs on topics pertaining to CPR, targeted temperature management and cardiac arrest outcomes. His work has been funded by grants from the American Heart Association, National Institutes of Health and foundation sources. He is an active national and international speaker on cardiac arrest and has mentored numerous fellows and residents in their development as biomedical investigators.

Since 2004, he has served as a volunteer of the American Heart Association on numerous committees. Besides serving as the new Chair for the 3CPR Council, Dr. Abella is also vice chair of the department of emergency medicine and associate professor at the University of Pennsylvania. Joining him as the 3CPR Council Vice Chair is Mark Gladwin, MD, chair of the department of medicine at the University of Pittsburgh School of Medicine. Dr. Gladwin’s clinical research and expertise focuses on pulmonary vascular disease, pulmonary complications of sickle cell disease and nitrite and nitric oxide chemistry and signaling. He has published more than 200 manuscripts on nitrite signaling and pulmonary hypertension and is funded by the National Heart, Lung, and Blood Institute, NIBI with a translational PO1 (tPO1), two R01 awards and two T32 training grants. He has served as a principal or associate investigator on more than 30 human subjects protocols and holds seven FDA INDs for the use of investigational therapeutic medications, including nitrite, carbon monoxide, L-NMMA and sildenafil.

It’s been an honor working with you all, and I thank you for the opportunity to serve as your Council Chair. I am confident that our Council is in great hands under the leadership of these two esteemed colleagues, and I look forward to the future of this Council. We have great programming planned for Scientific Sessions 2015, so please be sure to join us Nov. 7-11 in Orlando, Florida.

Q&A With Evan Brittain, MD

In the 3CPR Council, we are looking to highlight the careers and interests of our early career members. In this issue of Connections, John Ryan, MD, FAHA, University of Utah, interviews Evan Brittain, MD, Vanderbilt University, Division of Cardiovascular Medicine.

Q. Tell us about your background and how you became involved with the 3CPR Council?

A. I came to Vanderbilt in 2007 as part of the physician-scientist training program. After residency and cardiology fellowship, I joined Vanderbilt’s Pulmonary Hypertension Research Group as a research fellow based on an interest in cardiopulmonary hemodynamics and right ventricular (RV) function. During that time with help from my mentors (Anna Hennes, MD, and John Newman, MD), I began to meet and collaborate with other investigators in the PH field. The 3CPR Council at Scientific Sessions was the perfect way to network with other investigators in the field in addition to providing excellent educational content. I was also fortunate to participate at Scientific Sessions 2014 in the Courand and Cournand Young Investigator Award competition, which offers early investigators an opportunity to present their work to leaders in the field.

Q. Your work focuses on mechanisms of right ventricular dysfunction in pulmonary arterial hypertension. What approaches are you using to drive your research?

A. We have been interested in understanding the hemodynamic and metabolic determinants of right ventricular failure, the major cause of death in patients with PAH. Given the increasing recognition that metabolic dysfunction contributes to PAH, I’ve used metabolic imaging techniques to translate findings from our transgenic model of PAH into humans. Specifically, we found that myocardial lipidl accumulation contributed to RV failure in the mouse model so we employed proton magnetic resonance spectroscopy to quantify intramyocyte lipid lipids in living patients validating the findings from the mouse model. We also have used multiple PET tracers to measure the relative activity of glycysis and oxidative metabolism in RV in PAH patients and how those pathways change in the failing RV and in response to metabolic intervention. We hope these molecular imaging techniques can provide more information about what’s happening on a cellular level in the RV and pulmonary vasculature compared with standard echocardiography and cardiac MRI, and we plan to use both mouse models and patients to understand mechanisms of right heart failure to ultimately improve outcomes in this deadly disease. Along the same lines, we are also using broad-based metabolomics techniques to help identify the molecular underpinnings of different subtypes of PH and which metabolic pathways may be fruitful targets for intervention.

Q. For young scientists entering the field, what advice would you give them and how can the AHA help?

A. I think identifying a supportive and productive mentor(s) is the most critical component to early career success, and I’ve been fortunate in that regard. A good mentor will provide a stimulating scientific environment and connect you with people who will contribute to your success. The AHA can benefit early investigators in multiple ways. In addition to educational content and networking opportunities mentioned before, there are multiple funding opportunities for young scientists. The AHA’s fellow to faculty career development award has been an ideal mechanism for me to transition from research training to my initial faculty appointment. Other early career funding opportunities include predoctoral fellowships and the Mentored Clinical and Population Research Award. Finally, I would encourage early investigators to get involved in AHA committees to get to know Council leaders and help shape the AHA’s priorities.

Evans Brittain, MD

Research Award. Finally, I would encourage early investigators to get involved in AHA committees to get to know Council leaders and help shape the AHA’s priorities.

Q. Your work focuses on mechanisms of right ventricular dysfunction in pulmonary arterial hypertension. What approaches are you using to drive your research?

A. We have been interested in understanding the hemodynamic and metabolic determinants of right ventricular failure, the major cause of death in patients with PAH. Given the increasing recognition that metabolic dysfunction contributes to PAH, I’ve used metabolic imaging techniques to translate findings from our transgenic model of PAH into humans. Specifically, we found that myocardial lipidl accumulation contributed to RV failure in the mouse model so we employed proton magnetic resonance spectroscopy to quantify intramyocyte lipid lipids in living patients validating the findings from the mouse model. We also have used multiple PET tracers to measure the relative activity of glycysis and oxidative metabolism in RV in PAH patients and how those pathways change in the failing RV and in response to metabolic intervention. We hope these molecular imaging techniques can provide more information about what’s happening on a cellular level in the RV and pulmonary vasculature compared with standard echocardiography and cardiac MRI, and we plan to use both mouse models and patients to understand mechanisms of right heart failure to ultimately improve outcomes in this deadly disease. Along the same lines, we are also using broad-based metabolomics techniques to help identify the molecular underpinnings of different subtypes of PH and which metabolic pathways may be fruitful targets for intervention.

Q. For young scientists entering the field, what advice would you give them and how can the AHA help?

A. I think identifying a supportive and productive mentor(s) is the most critical component to early career success, and I’ve been fortunate in that regard. A good mentor will provide a stimulating scientific environment and connect you with people who will contribute to your success. The AHA can benefit early investigators in multiple ways. In addition to educational content and networking opportunities mentioned before, there are multiple funding opportunities for young scientists. The AHA’s fellow to faculty career development award has been an ideal mechanism for me to transition from research training to my initial faculty appointment. Other early career funding opportunities include predoctoral fellowships and the Mentored Clinical and Population Research Award. Finally, I would encourage early investigators to get involved in AHA committees to get to know Council leaders and help shape the AHA’s priorities.