Metabolic Transcriptional Effectors in Heart Disease

Dan Kelly

Burnham Institute for Medical Research at Lake Nona

DISCLOSURE INFORMATION:
D. Kelly serves on Scientific Advisory Boards for Lilly, Phrixus, and Johnson & Johnson.
Energy Metabolic Programming in the Developing and Diseased Heart

Physiologic growth and metabolic maturation

Fetal Heart → Postnatal Heart

Glucose
Lactate

Mitochondrial number/function & redistribution;

Adult Heart → Failing Heart

Fatty acids
Glucose

Mitochondrial functional capacity

Fatty acids
Glucose

ATP

Pathologic hypertrophy (HTN, Ischemia)
PPARγ Coactivator-1α (PGC-1α): Inducible, Cardiac-enriched Transcriptional Coactivator

adapted from Soyal et al., Diabetologia 2006
Energy Metabolic Programming in the Developing and Diseased Heart

Fetal Heart
- Glucose
- Lactate

Postnatal Heart
- Mitochondrial number/function & redistribution;

Adult Heart
- Fatty acids
- Glucose

Failing Heart
- Fatty acids
- Glucose

PGC-1α

ATP
Probing the PGC-1α Transcriptional Regulatory Cascade Using Gene Targeting in Mice

-lof studies

PGC-1α

MEF-2

NRF-1

NRF-2

? Sarcomere Metabolism

MtDNA Replication Electron Transport OXPHOS

Estrogen-related Receptor α (ERRα) Null-Heart Failure Following TAC

Huss et al, Cell Metab, 2007

Mitochondrial Fatty Acid β-Oxidation
The PGC-1 Transcriptional Coactivator Family

PGC-1α

- NRs
- NRF-1
- MEF-2
- FOXO1

- **activation**
- **Proline-rich**
- **Leucine-rich**
- **RNA recognition and splicing**

Loss-of-function studies in mice

- **PGC-1α**
 - Minimal Cardiac Phenotype
 - Pathologic remodeling following TAC
 - (Arany et al, PNAS, 2006)

- **PGC-1β**
 - Minimal Cardiac Phenotype

- **PRC**
 - ??
Conclusions: Generalized Combined PGC-1α/β Loss-of-function

PGC-1α and PGC-1β:

- Are required for the perinatal

What is the function of PGC coactivators in the adult??

- Dispensable for fetal survival and early stage formation of mitochondria

- Significant functional and target gene overlap, at least in heart
Combined PGC-1α/PGC-1β KO in Fast Skeletal Muscle (MLC-2f-Cre) Results In Profound Exercise Intolerance

Low Intensity Protocol: 1h @ 10 m/min then 2 m/min increment every 15 min; no incline

*, p < 0.05 vs. βflox; #, p < 0.05 vs. β−/−; $, p < 0.05 vs. α−/−
Combined Loss of PGC-1α and β in Skeletal Muscle Reduces Oxidative Capacity but not Oxidative (1 or 2a) Fibers

SDH

- αβ+/+
- α−/−
- β−/−
- αβ−/−

ATPase (Type 1)

- αβ+/+
- α−/−
- β−/−
- αβ−/−

Immuno MHC

- αβ+/+
- α−/−
- β−/−
- αβ−/−
Mitochondrial Structural Abnormalities in Muscle of skPGC-1α/β-/- Mice

WT (cre-, αwt, βf/f)

βKO (MLCcre+, αwt, βf/f)

αβ KO (MLCcre+, ako, βf/f)
Acute Cardiac-specific PGC-1β Gene Disruption on Chronic PGC-1α-/- Background Causes Severe HF

M-mode Echocardiography

LV Fractional Shortening
Lack of Cardiac Dysfunction in MHC-MerCre Hearts following Two-dose (50mg/kg) Tamoxifen Regimen

Time point:
2 days after 2nd TAM dose
Mitochondrial Structural Abnormalities Following Disruption of PGC-1β gene in PGC-1α/- Background

Control α/-β^{f/f}

α/-βcs/-MerCre
Charcot-Marie-Tooth Disease: Mitochondrial Derangements Due to Mutations in the Mitofusin (Mfn) 2 Gene

Brain (2006), 129, 2093–2102
Mechanisms of Mitochondrial Fission and Fusion

Reduced Cardiac mtDNA Levels and Mfn Gene Expression in PGC-\(\alpha/\beta\)-deficient Heart

- mtDNA levels are significantly lower in \(\alpha^{-/-}\beta^{f/f}\) compared to \(\alpha^{-/-}\beta^{f/f/cre}\) with a reduction of 31.4%.

- Mfn1 and Mfn2 gene expression is significantly increased in \(\alpha^{-/-}\beta^{f/f}\) compared to \(\alpha^{-/-}\beta^{f/f/cre}\).

- Drp-1 and Fis-1 gene expression remains relatively unchanged between the two groups.
Conclusions: PGC-1 Signaling in Adult Striated Muscle

- The control of mitochondrial integrity in striated muscle is remarkable dynamic and requires PGC-1-mediated transcriptional control.

- In states of PGC-1 deficiency, loss of mitochondrial quality control may contribute to pathologic remodeling in heart and skeletal muscle (and brain?)

IS THE PGC-1 CASCADE A RATIONALE THERAPEUTIC TARGET FOR HEART FAILURE AND OTHER DISEASES THAT REDUCE MITOCHONDRIAL FUNCTIONAL RESERVE?
Acknowlegements

Burnham
Juliet Fong
Zhenji Gan
Ling Lai
Teresa Leone
Manya Warrier
Christoph Zechner
Ola Martin
Kyugmoo Yea

Wash. Univ.
Kari Chambers
Jenny Duncan
Kory Lavine
Joel Schilling
John Yang
Steve Ewer

Collaborators
Zhen Yan
Steve Kliewer
Deb Mouio

Mouse CV Phenotyping Core
St. Louis
Carla Weinheimer
Attila Kovacs
Carrie Gierasch
Nanda Sambandam
Burnham Institute at Lake Nona